218
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Model-Informed Precision Dosing of Antibiotics in Osteoarticular Infections

, , , ORCID Icon &
Pages 99-110 | Published online: 11 Jan 2022

References

  • Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125(4):353–364. doi:10.1111/apm.12687
  • Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369–379. doi:10.1016/S0140-6736(04)16727-5
  • Gupta A, Kowalski TJ, Osmon DR, et al. Long-term outcome of pyogenic vertebral osteomyelitis: a cohort study of 260 patients. Open Forum Infect Dis. 2014;1(3):ofu107. doi:10.1093/ofid/ofu107
  • Pigrau C, Rodriguez-Pardo D, Fernandez-Hidalgo N, et al. Health care associated hematogenous pyogenic vertebral osteomyelitis: a severe and potentially preventable infectious disease. Medicine. 2015;94(3):e365. doi:10.1097/MD.0000000000000365
  • Uckay I, Holy D, Betz M, Sauer R, Huber T, Burkhard J. Osteoarticular infections: a specific program for older patients? Aging Clin Exp Res. 2021;33(3):703–710. doi:10.1007/s40520-019-01329-w
  • Walter N, Rupp M, Hinterberger T, Alt V. Prosthetic infections and the increasing importance of psychological comorbidities: an epidemiological analysis for Germany from 2009 through 2019. Orthopade. 2021. doi:10.1007/s00132-021-04088-7
  • Otto-Lambertz C, Yagdiran A, Wallscheid F, Eysel P, Jung N. Periprosthetic infection in joint replacement. Dtsch Arztebl Int. 2017;114(20):347–353. doi:10.3238/arztebl.2017.0347
  • Gundtoft PH, Pedersen AB, Varnum C, Overgaard S. Increased mortality after prosthetic joint infection in primary THA. Clin Orthop Relat Res. 2017;475(11):2623–2631. doi:10.1007/s11999-017-5289-6
  • Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J. Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am. 2013;95(24):2177–2184.
  • Kremers HM, Nwojo ME, Ransom JE, Wood-Wentz CM, Melton LJ 3rd, Huddleston PM 3rd. Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg Am. 2015;97(10):837–845. doi:10.2106/JBJS.N.01350
  • Yeo A, Ramachandran M. Acute haematogenous osteomyelitis in children. Br Med J. 2014;348:g66. doi:10.1136/bmj.g66
  • Lazzeri E, Bozzao A, Cataldo MA, et al. Joint EANM/ESNR and ESCMID-endorsed consensus document for the diagnosis of spine infection (spondylodiscitis) in adults. Eur J Nucl Med Mol Imaging. 2019;46(12):2464–2487. doi:10.1007/s00259-019-04393-6
  • Ondusko DS, Nolt D. Staphylococcus aureus. Pediatr Rev. 2018;39(6):287–298. doi:10.1542/pir.2017-0224
  • Nolla JM, Ariza J, Gómez-Vaquero C, et al. Spontaneous pyogenic vertebral osteomyelitis in nondrug users. Semin Arthritis Rheum. 2002;31(4):271–278. doi:10.1053/sarh.2002.29492
  • Perrotti PP, Corrales JL, Popescu BM. [Pyogenic vertebral osteomyelitis]. Medicina. 2009;69(5):513–518. [Spanish]
  • Titécat M, Senneville E, Wallet F, et al. Microbiologic profile of Staphylococci isolated from osteoarticular infections: evolution over ten years. Surg Infect (Larchmt). 2015;16(1):77–83. doi:10.1089/sur.2013.258
  • Sharff KA, Richards EP, Townes JM. Clinical management of septic arthritis. Curr Rheumatol Rep. 2013;15(6):332. doi:10.1007/s11926-013-0332-4
  • Tsantes AG, Papadopoulos DV, Vrioni G, et al. Spinal infections: an update. Microorganisms. 2020;8(4):476. doi:10.3390/microorganisms8040476
  • Berbari EF, Kanj SS, Kowalski TJ, et al. 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in Adults. Clin Infect Dis. 2015;61(6):e26–46. doi:10.1093/cid/civ482
  • Gelfand MS, Cleveland KO, Goswami RK, Heck R. Pathological fracture in acute osteomyelitis of long bones secondary to community-acquired methicillin-resistant Staphylococcus aureus: two cases and review of the literature. Am J Med Sci. 2006;332(6):357–360. doi:10.1097/00000441-200612000-00010
  • Kaandorp CJ, Krijnen P, Moens HJ, Habbema JD, van Schaardenburg D. The outcome of bacterial arthritis: a prospective community-based study. Arthritis Rheum. 1997;40(5):884–892. doi:10.1002/art.1780400516
  • Stepensky D, Kleinberg L, Hoffman A. Bone as an effect compartment: models for uptake and release of drugs. Clin Pharmacokinet. 2003;42(10):863–881. doi:10.2165/00003088-200342100-00001
  • Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;57(1):162–164. doi:10.1093/cid/cit189
  • Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014;40(1):76–94. doi:10.3109/1040841X.2013.763219
  • Amorese V, Donadu M, Usai D, et al. In vitro activity of essential oils against Pseudomonas aeruginosa isolated from infected hip implants. J Infect Dev Ctries. 2018;12(11):996–1001. doi:10.3855/jidc.10988
  • Li J, Yang J, Wang Y. Applications of model-informed drug development (MIDD) on new drug research and development. Chin J Clin Pharmacol Ther. 2020;25(01):1-8. doi:10.12092/j.issn.1009-2501.2020.01.001
  • Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–245. doi:10.1146/annurev-pharmtox-033020-113257
  • Kiang TK, Sherwin CM, Spigarelli MG, Ensom MH. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515–525. doi:10.1007/BF03261928
  • Ludden TM. Population pharmacokinetics. J Clin Pharmacol. 1988;28(12):1059–1063. doi:10.1002/j.1552-4604.1988.tb05714.x
  • Miller NA, Reddy MB, Heikkinen AT, Lukacova V, Parrott N. Physiologically based pharmacokinetic modelling for first-in-human predictions: an updated model building strategy illustrated with challenging industry case studies. Clin Pharmacokinet. 2019;58(6):727–746. doi:10.1007/s40262-019-00741-9
  • El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami-Hodjegan A, Ahmad A. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos. 2021;42(4):107–117. doi:10.1002/bdd.2257
  • Ghathian K, Frimodt-Moller N. Beta-hemolytic streptococci A, C and G are susceptible to cloxacillin. APMIS. 2021;129(6):314–316. doi:10.1111/apm.13134
  • Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86. doi:10.1086/510079
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D1082. doi:10.1093/nar/gkx1037
  • Martinez-Taboada VM, Cabeza R, Cacho PM, Blanco R, Rodriguez-Valverde V. Cloxacillin-based therapy in severe septic bursitis: retrospective study of 82 cases. Joint Bone Spine. 2009;76(6):665–669. doi:10.1016/j.jbspin.2009.04.003
  • Courjon J, Garzaro M, Roger PM, et al. A population pharmacokinetic analysis of continuous infusion of cloxacillin during Staphylococcus aureus bone and joint infections. Antimicrob Agents Chemother. 2020;64(12). doi:10.1128/AAC.01562-20.
  • Gower PE, Dash CH. Cephalexin: human studies of absorption and excretion of a new cephalosporin antibiotic. Br J Pharmacol. 1969;37(3):738–747.
  • FDA Approved Drug Products: KEFLEX®(cephalexin) capsules. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/050405s097lbl.pdf. Accessed December 31, 2021.
  • Jalava S, Saarimaa H, Elfving R. Cephalexin levels in serum, synovial fluid and joint tissues after oral administration. Scand J Rheumatol. 1977;6(4):250–252. doi:10.3109/03009747709095460
  • Julie Autmizguine M, Watt KM, Théorêt Y, Kassir N, Laferrière C. Stefan parent bruce tapiéro and philippe ovetchkine. pharmacokinetics and pharmacodynamics of oral cephalexin in children with osteoarticular infections. Pediatr Infect Dis J. 2013;32(12):1340–1344. doi:10.1097/INF.0b013e3182a222a6
  • Gwee A, Autmizguine J, Curtis N, Duffull SB. Twice- and thrice-daily cephalexin dosing for staphylococcus aureus infections in children. Pediatr Infect Dis J. 2020;39(6):519–522. doi:10.1097/INF.0000000000002646
  • Spížek J, Řezanka T. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. 2017;133:20–28. doi:10.1016/j.bcp.2016.12.001
  • Curis E, Pestre V, Jullien V, et al. Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections. Infection. 2015;43(4):473–481. doi:10.1007/s15010-015-0773-y
  • Bouazza N, Pestre V, Jullien V, et al. Population pharmacokinetics of clindamycin orally and intravenously administered in patients with osteomyelitis. Br J Clin Pharmacol. 2012;74(6):971–977. doi:10.1111/j.1365-2125.2012.04292.x
  • Pietsch F, Bergman JM, Brandis G, et al. Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects. J Antimicrob Chemother. 2017;72(1):75–84. doi:10.1093/jac/dkw364
  • Varshney A, Ansari Y, Zaidi N, et al. Analysis of binding interaction between antibacterial ciprofloxacin and human serum albumin by spectroscopic techniques. Cell Biochem Biophys. 2014;70(1):93–101. doi:10.1007/s12013-014-9863-1
  • Sisto F, Bonomi A, Cavicchini L, et al. Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. Cytotherapy. 2014;16(2):181–190. doi:10.1016/j.jcyt.2013.11.009
  • Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother. 2003;47(7):2283–2292. doi:10.1128/AAC.47.7.2283-2292.2003
  • Landersdorfer CB, Kinzig M, Hohl R, Kempf P, Nation RL, Sorgel F. Physiologically based population pharmacokinetic modeling approach for ciprofloxacin in bone of patients undergoing orthopedic surgery. ACS Pharmacol Transl Sci. 2020;3(3):444–454. doi:10.1021/acsptsci.0c00045
  • Zahr N, Urien S, Aubry A, et al. Ciprofloxacin population pharmacokinetics during long-term treatment of osteoarticular infections. J Antimicrob Chemother. 2021;76(11):2906–2913. doi:10.1093/jac/dkab275
  • Norrby SR. Levofloxacin. Expert Opin Pharmacother. 1999;1(1):109–119. doi:10.1517/14656566.1.1.109
  • FDA Approved Drug Products: levaquin (levofloxacin) oral tablets. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020634s071lbl.pdf. Accessed December 31, 2021.
  • Rimmelé T, Boselli E, Breilh D, et al. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004;53(3):533–535. doi:10.1093/jac/dkh110
  • Marongiu G, Conte M, Verderosa V, et al. Late onset periprosthetic joint infection of the knee caused by Streptococcus anginosus. Case presentation and literature review. J Infect Dev Ctries. 2021;15(3):436–441. doi:10.3855/jidc.12326
  • Eloy G, Lebeaux D, Launay M, et al. Influence of renal function and age on the pharmacokinetics of levofloxacin in patients with bone and joint infections. Antibiotics. 2020;9(7). doi:10.3390/antibiotics9070401.
  • Cluzel RA, Lopitaux R, Sirot J, Rampon S. Rifampicin in the treatment of osteoarticular infections due to staphylococci. J Antimicrob Chemother. 1984;13(suppl_C):23–29. doi:10.1093/jac/13.suppl_C.23
  • Marsot A, Ménard A, Dupouey J, Muziotti C, Guilhaumou R, Blin O. Population pharmacokinetics of rifampicin in adult patients with osteoarticular infections: interaction with fusidic acid. Br J Clin Pharmacol. 2017;83(5):1039–1047. doi:10.1111/bcp.13178
  • Marsot A, Ménard A, Dupouey J, Allanioux L, Blin O, Guilhaumou R. Evaluation of current dosing guidance for oral rifampicin treatment in adult patients with osteoarticular infections. Br J Clin Pharmacol. 2020;86(11):2319–2324. doi:10.1111/bcp.14319
  • Andes D, Craig WA. In vivo pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob Agents Chemother. 2007;51(5):1633–1642. doi:10.1128/AAC.01264-06
  • FDA Approved product label: DALVANCE(dalbavancin). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021883s007lbl.pdf. Accessed December 31, 2021.
  • Veve MP, Patel N, Smith ZA, Yeager SD, Wright LR, Shorman MA. Comparison of dalbavancin to standard-of-care for outpatient treatment of invasive gram-positive infections. Int J Antimicrob Agents. 2020;56(6):106210. doi:10.1016/j.ijantimicag.2020.106210
  • Fiore V, De Vito A, Aloisio A, et al. Dalbavancin two dose regimen for the treatment of prosthetic joint infections: new possible options for difficult to treat infectious diseases. Infect Dis. 2021;53(6):473–475. doi:10.1080/23744235.2021.1893898
  • Dunne MW, Puttagunta S, Sprenger CR, Rubino C, Van Wart S, Baldassarre J. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother. 2015;59(4):1849–1855. doi:10.1128/AAC.04550-14
  • Cojutti PG, Rinaldi M, Zamparini E, et al. Population pharmacokinetics of dalbavancin and dosing consideration for optimal treatment of adult patients with staphylococcal osteoarticular infections. Antimicrob Agents Chemother. 2021;65(5): e02260–20. doi:10.1128/AAC.02260-20.
  • Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48(1):63–68. doi:10.1128/AAC.48.1.63-68.2004
  • FDA Approved Drug Products: CUBICIN (daptomycin) injection. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021572s063,064lbl.pdf. Accessed December 31, 2021.
  • Montange D, Berthier F, Leclerc G, et al. Penetration of daptomycin into bone and synovial fluid in joint replacement. Antimicrob Agents Chemother. 2014;58(7):3991–3996. doi:10.1128/AAC.02344-14
  • Goutelle S, Roux S, Gagnieu MC, et al. Pharmacokinetic variability of daptomycin during prolonged therapy for bone and joint infections. Antimicrob Agents Chemother. 2016;60(5):3148–3151. doi:10.1128/AAC.02597-15
  • Bricca R, Goutelle S, Roux S, et al. Genetic polymorphisms of ABCB1 (P-glycoprotein) as a covariate influencing daptomycin pharmacokinetics: a population analysis in patients with bone and joint infection. J Antimicrob Chemother. 2019;74(4):1012–1020. doi:10.1093/jac/dky541
  • Garreau R, Bricca R, Gagnieu MC, et al. Population pharmacokinetics of daptomycin in patients with bone and joint infection: minimal effect of rifampicin co-administration and confirmation of a sex difference. J Antimicrob Chemother. 2021;76(5):1250–1257. doi:10.1093/jac/dkab006
  • Chen M, Nafziger AN, Drusano GL, Ma L, Bertino JS Jr. Comparative pharmacokinetics and pharmacodynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother. 2006;50(4):1222–1227. doi:10.1128/AAC.50.4.1222-1227.2006
  • Chambers J, Page-Sharp M, Salman S, et al. Ertapenem for osteoarticular infections in obese patients: a pharmacokinetic study of plasma and bone concentrations. Eur J Clin Pharmacol. 2019;75(4):511–517. doi:10.1007/s00228-018-2597-z
  • Goutelle S, Valour F, Gagnieu MC, Laurent F, Chidiac C, Ferry T. Population pharmacokinetics and probability of target attainment of ertapenem administered by subcutaneous or intravenous route in patients with bone and joint infection. J Antimicrob Chemother. 2018;73(4):987–994. doi:10.1093/jac/dkx477
  • Veganzones J, Montero A, Maseda E; Servicio de Anestesia UdCCQ, Hospital Universitario La Paz, Madrid. New evidence on the use of fosfomycin for bacteremia and infectious endocarditis. Rev Esp Quimioter. 2019;32(Suppl 1):25.
  • Lepak AJ, Zhao M, VanScoy B, et al. In vivo pharmacokinetics and pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(6). doi:10.1128/AAC.00476-17.
  • Docobo-Perez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–5610. doi:10.1128/AAC.00752-15
  • Morata L, Soriano A. The role of fosfomycin in osteoarticular infection. Rev Esp Quimioter. 2019;32(Suppl1):30–36.
  • Schintler MV, Traunmuller F, Metzler J, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64(3):574–578. doi:10.1093/jac/dkp230
  • Tsegka KG, Voulgaris GL, Kyriakidou M, Kapaskelis A, Falagas ME. Intravenous fosfomycin for the treatment of patients with bone and joint infections: a review. Expert Rev Anti Infect Ther. 2021;1–11. doi:10.1080/14787210.2021.1932463
  • Rinaldi M, Cojutti PG, Zamparini E, et al. Population pharmacokinetics and Monte Carlo simulation for dosage optimization of fosfomycin in the treatment of osteoarticular infections in patients without renal dysfunction. Antimicrob Agents Chemother. 2021;65(5). doi:10.1128/AAC.02038-20.