403
Views
7
CrossRef citations to date
0
Altmetric
Original Research

High Rates of Aminoglycoside Methyltransferases Associated with Metallo-Beta-Lactamases in Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Clinical Isolates from a Tertiary Care Hospital in Egypt

, ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 4849-4858 | Published online: 19 Nov 2021

References

  • El-Far A, Samir S, El-Gebaly E, et al. Assessment of eugenol inhibitory effect on biofilm formation and biofilm gene expression in methicillin resistant Staphylococcus aureus clinical isolates in Egypt. Infect, Genet Evol. 2021;89:104722. doi:10.1016/j.meegid.2021.10472233444856
  • Al-Orphaly M, Hadi HA, Eltayeb FK, et al. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere. 2021;6(3). doi:10.1128/msphere.00202-21
  • Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harbor Perspect Med. 2016;6:1–18.
  • Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):1–52. doi:10.1128/CMR.00031-19
  • Kashfi M, Hashemi A, Eslami G, Amin MS, Tarashi S, Taki E. The prevalence of aminoglycoside-modifying enzyme genes among Pseudomonas aeruginosa strains isolated from burn patients. Arch Clin Infect Dis. 2017;12(1):1–5. doi:10.5812/archcid.40896
  • Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm. 2016;7(1):11–27. doi:10.1039/c5md00344j26877861
  • Smith CA, Bhattacharya M, Toth M, Stewart NK, Vakulenko SB. Aminoglycoside resistance profile and structural architecture of the aminoglycoside acetyltransferase AAC(6ʹ)-Im. Microbial Cell. 2017;4(12):402–410. doi:10.15698/mic2017.12.60229234669
  • Costello SE, Deshpande LM, Andrew PD, Rodrigo E, Mendes MC. Aminoglycoside-modifying enzyme and 16S ribosomal RNA methyltransferase genes among a global collection of Gram-negative isolates. J Global Antimicrob Resist. 2019;16:278–285. doi:10.1016/j.jgar.2018.10.020
  • Basha AM, El-Sherbiny GM, Mabrouk MI. Phenotypic characterization of the Egyptian isolates “extensively drug-resistant Pseudomonas aeruginosa” and detection of their metallo-β-lactamases encoding genes. Bull National Res Centre. 2020;44(1). doi:10.1186/s42269-020-00350-8
  • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. In: Molecular Cloning: A Laboratory a Manual. 3rd ed. 2001.
  • Weinstein MP, Lewis JS, Kraft CS. The clinical and laboratory standards institute subcommittee on Antimicrobial susceptibility testing: background, organization, functions, and processes. J Clin Microbiol. 2020;58(3):1–16. doi:10.1128/JCM.01864-19
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x21793988
  • Sadeghi HMM, Najafabadi AJ, Abedi D, Dehkordi AJ. Identification of an isolate of pseudomonas aeroginosa deposited in PTCC as a PHA producer strain: comparison of three different bacterial genomic DNA extraction methods. J Biol Sci. 2008;8:826–830. doi:10.3923/jbs.2008.826.830
  • Gamal D, Fernández-Martínez M, Salem D, et al. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int J Infect Dis. 2016;43:17–20. doi:10.1016/j.ijid.2015.12.00326686939
  • Miró E, Grünbaum F, Gómez L, et al. Characterization of aminoglycoside-modifying enzymes in enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19(2):94–99. doi:10.1089/mdr.2012.012523206280
  • Asghar AH, Ahmed OB. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clin Pract. 2018;15(2):541–547. doi:10.4172/clinical-practice.1000391
  • Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:1–18. doi:10.7573/dic.212527
  • Valderrama-Carmona P, Cuartas JH, Carolina CD, Corredor M. The role of Pseudomonas aeruginosa RNA methyltransferases in antibiotic resistance. IntechOpen. 2012;13:297.
  • Khalifa HO, Soliman AM, Ahmed AM, et al. High prevalence of antimicrobial resistance in gram-negative bacteria isolated from clinical settings in egypt: recalling for judicious use of conventional antimicrobials in developing nations. Microb Drug Resist. 2019;25(3):371–385. doi:10.1089/mdr.2018.038030681401
  • El-Mahdy R, El-Kannishy G. Virulence factors of carbapenem-resistant pseudomonas aeruginosa in hospital-acquired infections in Mansoura, Egypt. Infect Drug Resist. 2019;12:3455–3461. doi:10.2147/IDR.S22232931819540
  • Mahmoud A, Zahran W, Hindawi G, Labib A, Galal R. Prevalence of multidrug-resistant pseudomonas aeruginosa in patients with nosocomial infections at a University Hospital in Egypt, with special reference to typing methods. J Virol Microbiol. 2013;2013:1–13. doi:10.5171/2013.290047
  • Hassuna NA, Mandour SA, Mohamed ES. Virulence constitution of multi-drug-resistant pseudomonas aeruginosa in upper Egypt. Infect Drug Resist. 2020;13:587–595. doi:10.2147/IDR.S23369432110069
  • Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes. 2020;13(1):4–9. doi:10.1186/s13104-020-05224-w31898553
  • Pérez A, Gato E, Pérez-Llarena J, et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2019;74(5):1244–1252. doi:10.1093/jac/dkz03030753505
  • Al Wutayd O, Al Nafeesah A, Adam I, Babikir IH. The antibiotic susceptibility patterns of uropathogens isolated in Qassim, Saudi Arabia. J Infect Dev Ctries. 2018;12(11):946–952. doi:10.3855/jidc.1055332012123
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192. doi:10.1016/j.biotechadv.2018.11.01330500353
  • Rodrigues YC, Furlaneto IP, Pinto Maciel AHP, et al. High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. PLoS One. 2020;15(9):1–21. doi:10.1371/journal.pone.0238741
  • Atassi G, Scheetz M, Nozick S, et al. Genomics of aminoglycoside resistance in pseudomonas aeruginosa bloodstream infections at a United States Academic Hospital. medRxiv. 2021. doi:10.1101/2021.01.15.21249897
  • Hidalgo L, Hopkins KL, Gutierrez B, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother. 2013;68(7):1543–1550. doi:10.1093/jac/dkt07823580560
  • Rahman M, Prasad KN, Pathak A, et al. RmtC and RmtF 16S rRNA methyltransferase in NDM-1–producing Pseudomonas aeruginosa. Emerg Infect Dis. 2015;21(11):2059–2062. doi:10.3201/eid2111.15027126488937
  • Jun-ichiWachinoa J-I, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updates. 2012;15(3):133–148. doi:10.1016/j.drup.2012.05.001
  • Golkar T, Bassenden AV, Maiti K, Arya DP, Schmeing TM, Berghuis AM. Structural basis for plazomicin antibiotic action and resistance. Commun Biol. 2021;4(1). doi:10.1038/s42003-021-02261-4
  • Hashem H, Hanora A, Abdalla S, Shaeky A, Saad A. Dissemination of metallo-β-lactamase in Pseudomonas aeruginosa isolates in Egypt: mutation in blaVIM-4. Apmis. 2017;125(5):499–505. doi:10.1111/apm.1266928295668
  • El MN, Said M, Emad R, Salama M, Hashish A. Detection of IMP and VIM genes in Pseudomonas aeruginosa isolated from Egyptian patients. Arch Med Sci Civilization Dis. 2019;4(1):58–63. doi:10.5114/amscd.2019.86742
  • Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo‑β‑lactamase‑mediated resistance among clinical carbapenem‑resistant. Tzu Chi Medical j. 2018;30(2):90–96. doi:10.4103/tcmj.tcmj
  • Wang W, Wang X. Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. J Lab Med. 2020;44(4):197–203. doi:10.1515/labmed-2019-0162
  • Diab M, Fam N, El-said M, EL-Defrawy EE. Occurrence of VIM-2 Metallo– lactamases in imipenem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr J Microbiol Res. 2013;7(35):4465–4472. doi:10.5897/AJMR2013.6181