501
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Pathogenic Characteristics and Risk Factors for ESKAPE Pathogens Infection in Burn Patients

, , ORCID Icon, , , , , & ORCID Icon show all
Pages 4727-4738 | Published online: 12 Nov 2021

References

  • Sadeghi-Bazargani H, Mohammadi R, Amiri S, et al. Individual-level predictors of inpatient childhood burn injuries: a case-control study. BMC Public Health. 2016;16(1):209. doi:10.1186/s12889-016-2799-126931103
  • Wen JJ, Cummins C, Radhakrishnan RS. Sildenafil recovers burn-induced cardiomyopathy. Cells. 2020;9(6):1393. doi:10.3390/cells9061393
  • Lee KC, Dretzke J, Grover L, Logan A, Moiemen N. A systematic review of objective burn scar measurements. Burns Trauma. 2016;4:14. doi:10.1186/s41038-016-0036-x27574684
  • Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial infections after burn injuries: impact of multidrug resistance. Clin Infect Dis. 2017;65(12):2130–2136. doi:10.1093/cid/cix68229194526
  • Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–434.16614255
  • Zhang P, Zou B, Liou YC, Huang C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma. 2021;9:tkaa047. doi:10.1093/burnst/tkaa04733654698
  • Glasser JS, Landrum ML, Chung KK, et al. Description of Streptococcus pneumoniae infections in burn patients. Burns. 2010;36(4):528–532. doi:10.1016/j.burns.2009.07.00619765906
  • Richwagen N, Lyles JT, Dale BLF, Quave CL. Antibacterial activity of Kalanchoe mortagei and K. fedtschenkoi against ESKAPE pathogens. Front Pharmacol. 2019;10:67. doi:10.3389/fphar.2019.0006730792655
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):e00181–e00219. doi:10.1128/CMR.00181-19.32404435
  • Peeters P, Ryan K, Karve S, et al. The impact of initial antibiotic treatment failure: real-world insights in patients with complicated, health care-associated intra-abdominal infection. Infect Drug Resist. 2019;12:329–343. doi:10.2147/IDR.S18411630774399
  • Hu F, Guo Y, Yang Y, et al. Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Eur J Clin Microbiol Infect Dis. 2019;38(12):2275–2281. doi:10.1007/s10096-019-03673-131478103
  • Rossi R, Ciofalo M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing Imidazole Moiety. Molecules. 2020;25(21):5133. doi:10.3390/molecules25215133
  • Li Z, Ding Z, Liu Y, et al. Phenotypic and genotypic characteristics of biofilm formation in clinical isolates of Acinetobacter baumannii. Infect Drug Resist. 2021;14:2613–2624. doi:10.2147/IDR.S31008134262306
  • Li Z, Ding Z, Yang J, et al. Carbapenem-resistant Klebsiella pneumoniae in southwest China: molecular characteristics and risk factors caused by KPC and NDM producers. Infect Drug Resist. 2021;14:3145–3158. doi:10.2147/IDR.S32424434413658
  • Ladhani HA, Yowler CJ, Claridge JA. Burn wound colonization, infection, and sepsis. Surg Infect. 2021;22(1):44–48. doi:10.1089/sur.2020.346
  • Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M. Changes of microbial flora and wound colonization in burned patients. Burns. 2004;30(4):357–361. doi:10.1016/j.burns.2003.12.01315145194
  • Chen H, Yang L, Cheng L, Hu XH, Shen YM. Distribution and drug resistance of pathogens in burn patients in China from 2006 to 2019. World J Clin Cases. 2021;9(10):2228–2237. doi:10.12998/wjcc.v9.i10.222833869598
  • Gong Y, Peng Y, Luo X, et al. Different infection profiles and antimicrobial resistance patterns between burn ICU and common wards. Front Cell Infect Microbiol. 2021;11:681731. doi:10.3389/fcimb.2021.68173134277469
  • Hashemzadeh M, Heydari R, Asareh Zadegan Dezfuli A, Saki M, Meghdadi H, Bakhtiyariniya P. Occurrence of multiple-drug resistance bacteria and their antimicrobial resistance patterns in burn infections from southwest of Iran. J Burn Care Res. 2021. doi:10.1093/jbcr/irab097
  • Escandon-Vargas K, Tangua AR, Medina P, et al. Healthcare-associated infections in burn patients: timeline and risk factors. Burns. 2020;46(8):1775–1786. doi:10.1016/j.burns.2020.04.03132593482
  • Karmakar A, Dua P, Ghosh C. Biochemical and molecular analysis of Staphylococcus aureus clinical isolates from hospitalized patients. Can J Infect Dis Med Microbiol. 2016;2016:9041636. doi:10.1155/2016/904163627366185
  • Karmakar A, Jana D, Dutta K, Dua P, Ghosh C. Prevalence of panton-valentine leukocidin gene among community acquired Staphylococcus aureus: a real-time PCR study. J Pathog. 2018;2018:4518541. doi:10.1155/2018/451854130245888
  • Jahanshahi A, Zeighami H, Haghi F. Molecular characterization of methicillin and vancomycin resistant Staphylococcus aureus strains isolated from hospitalized patients. Microb Drug Resist. 2018;24(10):1529–1536. doi:10.1089/mdr.2018.006929883257
  • Gong Y, Shen X, Huang G, et al. Epidemiology and resistance features of Acinetobacter baumannii isolates from the ward environment and patients in the burn ICU of a Chinese hospital. J Microbiol. 2016;54(8):551–558. doi:10.1007/s12275-016-6146-027480635
  • Sarhaddi N, Soleimanpour S, Farsiani H, et al. Elevated prevalence of multidrug-resistant Acinetobacter baumannii with extensive genetic diversity in the largest burn centre of northeast Iran. J Glob Antimicrob Resist. 2017;8:60–66. doi:10.1016/j.jgar.2016.10.00928011349
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-329276051
  • Zhao Y, Hu K, Zhang J, et al. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in ICU of the eastern Heilongjiang Province, China. BMC Infect Dis. 2019;19(1):452. doi:10.1186/s12879-019-4073-531113374
  • El Bannah AMS, Nawar NN, Hassan RMM, Salem STB. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in a tertiary care hospital in Egypt: clonal spread of blaOXA-23. Microb Drug Resist. 2018;24(3):269–277. doi:10.1089/mdr.2017.005728783427
  • Jain M, Sharma A, Sen MK, Rani V, Gaind R, Suri JC. Phenotypic and molecular characterization of Acinetobacter baumannii isolates causing lower respiratory infections among ICU patients. Microb Pathog. 2019;128:75–81. doi:10.1016/j.micpath.2018.12.02330562602
  • Manandhar S, Zellweger RM, Maharjan N, et al. A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. Ann Clin Microbiol Antimicrob. 2020;19(1):48. doi:10.1186/s12941-020-00390-y33087115
  • Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(suppl_1):S28–S36. doi:10.1093/infdis/jiw28228375512
  • Gallaher JR, Banda W, Lachiewicz AM, Krysiak R, Cairns BA, Charles AG. Colonization with multidrug-resistant Enterobacteriaceae is associated with increased mortality following burn injury in Sub-Saharan Africa. World J Surg. 2018;42(10):3089–3096. doi:10.1007/s00268-018-4633-729696325
  • Mirzaei B, Babaei R, Bazgir ZN, Goli HR, Keshavarzi S, Amiri E. Prevalence of Enterobacteriaceae spp. and its multidrug-resistant rates in clinical isolates: a two-center cross-sectional study. Mol Biol Rep. 2021;48(1):665–675. doi:10.1007/s11033-020-06114-x33389531
  • Cohen Mendel L, Amity K, Katz DE, Lazarovitch T, Zaidenstein R, Marchaim D. The epidemiology of carbapenem resistant Enterobacter spp: a case-case-control matched analysis. Infect Control Hosp Epidemiol. 2021;42(6):754–759. doi:10.1017/ice.2020.128633228816
  • Liao W, De Wang L, Li D, et al. High prevalence of 16s rRNA methylase genes among carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates in a Chinese Tertiary Hospital. Microb Drug Resist. 2021;27(1):44–52. doi:10.1089/mdr.2019.048232429790
  • Yu X, Zhang W, Zhao Z, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates with focus on antimicrobial resistance. BMC Genomics. 2019;20(1):822. doi:10.1186/s12864-019-6225-931699025
  • Madaha EL, Gonsu HK, Bughe RN, Fonkoua MC, Ateba CN, Mbacham WF. Occurrence of blaTEM and blaCTXM genes and biofilm-forming ability among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii in Yaounde, Cameroon. Microorganisms. 2020;8(5):708. doi:10.3390/microorganisms8050708
  • Francisco J, Aragao I, Cardoso T. Risk factors for long-term mortality in patients admitted with severe infection. BMC Infect Dis. 2018;18(1):161. doi:10.1186/s12879-018-3054-429621990
  • Pragasam AK, Vijayakumar S, Bakthavatchalam YD, et al. Molecular characterisation of antimicrobial resistance in Pseudomonas aeruginosa and Acinetobacter baumannii during 2014 and 2015 collected across India. Indian J Med Microbiol. 2016;34(4):433–441. doi:10.4103/0255-0857.19537627934820
  • Dylewksi ML, Baker M, Prelack K, et al. The safety and efficacy of parenteral nutrition among pediatric patients with burn injuries. Pediatr Crit Care Med. 2013;14(3):e120–e125. doi:10.1097/PCC.0b013e3182712b2b23392358
  • You T, Zhang H, Guo L, Ling KR, Hu XY, Li LQ. Differences in clinical characteristics of early- and late-onset neonatal sepsis caused by Klebsiella pneumoniae. Int J Immunopathol Pharmacol. 2020;34:2058738420950586. doi:10.1177/205873842095058632816593
  • Hiengrach P, Panpetch W, Worasilchai N, et al. Administration of candida albicans to dextran sulfate solution treated mice causes intestinal dysbiosis, Emergence and dissemination of intestinal Pseudomonas Aeruginosa and lethal sepsis. Shock. 2020;53(2):189–198. doi:10.1097/SHK.000000000000133930829903