663
Views
8
CrossRef citations to date
0
Altmetric
Review

Development and Research Progress of Anti-Drug Resistant Bacteria Drugs

, &
Pages 5575-5593 | Published online: 21 Dec 2021

References

  • Bennett JW, Chung KT. Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol. 2001;49:163–184.11757350
  • Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–176. doi:10.1007/s10295-015-1723-526739136
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi:10.1128/MMBR.00016-1020805405
  • Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi:10.1016/j.mib.2019.10.00831733401
  • Power E. Impact of antibiotic restrictions: the pharmaceutical perspective. Clin Microbiol Infect. 2006;12(Suppl 5):25–34. doi:10.1111/j.1469-0691.2006.01528.x
  • Wetzel C, Lonneman M, Wu C. Polypharmacological drug actions of recently FDA approved antibiotics. Eur J Med Chem. 2021;209:112931. doi:10.1016/j.ejmech.2020.11293133127170
  • Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88(1):26–40. doi:10.1007/s00239-019-09914-331659373
  • World Health Organization. La Resistencia a Los Antimicrobianos. Suiza: World Health Organization; 2019.
  • O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Government of the United Kingdom; 2016.
  • Antibiotic/antimicrobial resistance (AR/AMR). Available from: https://www.cdc.gov/drugresistance/index.html. Accessed July 20, 2020.
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the Eu and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-430409683
  • World Health Organization. Superbugs. Why We Need Action Now. World Health Organization; 2016.
  • Thompson ND, LaPlace L, Epstein L, et al. Prevalence of antimicrobial use and opportunities to improve prescribing practices in U.S. nursing homes. J Am Med Dir Assoc. 2016;17(12):1151–1153. doi:10.1016/j.jamda.2016.08.01327751803
  • Woolhouse M, Waugh C, Perry MR, Nair H. Global disease burden due to antibiotic resistance - state of the evidence. J Glob Health. 2016;6(1):10306. doi:10.7189/jogh.06.010306
  • Santhakumari S, Ravi AV, Logalakshmi R. Targeting Quorum sensing mechanism: an alternative anti-virulent strategy for the treatment of bacterial infections. Int J Food Microbiol. 2018;281:60–71. doi:10.1016/j.ijfoodmicro.2018.05.02429864697
  • Gil-Gil T, Laborda P, Sanz-García F, Hernando-Amado S, Blanco P, Martínez JL. Antimicrobial resistance: a multifaceted problem with multipronged solutions. Microbiologyopen. 2019;8(11):e945. doi:10.1002/mbo3.94531724836
  • Xu WC, Silverman MH, Yu XY, Wright G, Brown N. Discovery and development of DNA polymerase iiic inhibitors to treat gram-positive infections. Bioorg Med Chem. 2019;27(15):3209–3217. doi:10.1016/j.bmc.2019.06.01731221610
  • Antibiotic Research UK; 2019. Available from: https://www.antibioticresearch.org.uk/about-antibiotic-resistance. Accessed November 27, 2021.
  • Bartlett JG, Gilbert DN, Spellberg B. Seven ways to preserve the miracle of antibiotics. Clin Infect Dis. 2013;56(10):1445–1450. doi:10.1093/cid/cit07023403172
  • DeNegre AA, Ndeffo Mbah ML, Myers K, Fefferman NH. Emergence of antibiotic resistance in immunocompromised host populations: a case study of emerging antibiotic resistant tuberculosis in aids patients. PLoS One. 2019;14(2):e0212969. doi:10.1371/journal.pone.021296930817798
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336–343. doi:10.1038/nature1704226791724
  • Fairlamb AH, Gow NA, Matthews KR, Waters AP. drug resistance in eukaryotic microorganisms. Nat Microbiol. 2016;1(7):16092. doi:10.1038/nmicrobiol.2016.9227572976
  • Hoenes K, Bauer R, Meurle T, Spellerberg B, Hessling M. Inactivation effect of violet and blue light on eskape pathogens and closely related non-pathogenic bacterial species - a promising tool against antibiotic-sensitive and antibiotic-resistant microorganisms. Front Microbiol. 2020;11:612367. doi:10.3389/fmicb.2020.61236733519770
  • Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no eskape. J Infect Dis. 2008;197(8):1079–1081. doi:10.1086/53345218419525
  • Biggest threats and data. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed March 2, 2021.
  • Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–171. doi:10.1016/j.drup.2010.08.00320833577
  • Groves MD, Crouch B, Coombs GW, et al. Molecular epidemiology of methicillin-resistant staphylococcus aureus isolated from Australian veterinarians. PLoS One. 2016;11(1):e0146034. doi:10.1371/journal.pone.014603426735694
  • Van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol. 2000;60(4):457–470. doi:10.1016/S0006-2952(00)00291-410874120
  • Bao M, Zhang L, Liu B, et al. Synergistic effects of anti-mrsa herbal extracts combined with antibiotics. Future Microbiol. 2020;15:1265–1276. doi:10.2217/fmb-2020-000133026882
  • Piątkowska E, Piątkowski J, Przondo-Mordarska A. The strongest resistance of Staphylococcus aureus to erythromycin is caused by decreasing uptake of the antibiotic into the cells. Cell Mol Biol Lett. 2012;17(4):633–645. doi:10.2478/s11658-012-0034-323001512
  • Chang S, Sievert DM, Hageman JC, et al. Infection with vancomycin-resistant staphylococcus aureus containing the vana resistance gene. N Engl J Med. 2003;348(14):1342–1347. doi:10.1056/NEJMoa02502512672861
  • Peraman R, Sure SK, Dusthackeer VNA, et al. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Futur J Pharm Sci. 2021;7(1):56. doi:10.1186/s43094-021-00196-533686369
  • Ghodhbane H, Elaidi S, Sabatier JM, Achour S, Benhmida J, Regaya I. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infect Disord Drug Targets. 2015;15(1):2–12. doi:10.2174/187152651466614052211333724853876
  • Oliveira J, Reygaert WC. Gram negative bacteria. In: Statpearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC.; 2020.
  • Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and pseudomonas aeruginosa among patients hospitalized at Felegehiwot Referral Hospital, Northwest Ethiopia: a cross-sectional study. BMC Infect Dis. 2020;20(1):92. doi:10.1186/s12879-020-4811-832000693
  • Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in gram-negative bacilli. Ann Intensive Care. 2015;5(1):61. doi:10.1186/s13613-015-0061-026261001
  • Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo). 2014;67(1):7–22. doi:10.1038/ja.2013.4923756684
  • Shirley M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs. 2018;78(6):675–692. doi:10.1007/s40265-018-0902-x29671219
  • Sharma R, Park TE, Moy S. Ceftazidime-avibactam: a novel cephalosporin/Β-lactamase inhibitor combination for the treatment of resistant gram-negative organisms. Clin Ther. 2016;38(3):431–444. doi:10.1016/j.clinthera.2016.01.01826948862
  • Avycaz FDA highlights of prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/206494s003lbl.pdf. Accessed March 29, 2018.
  • Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (reprise): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16(6):661–673. doi:10.1016/S1473-3099(16)30004-427107460
  • Mazuski JE, Gasink LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62(11):1380–1389. doi:10.1093/cid/ciw13326962078
  • Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist. 2020;22:18–27. doi:10.1016/j.jgar.2019.12.00931863899
  • Raj G, Priyadarshini R, Murugesan S, Adhimoolam M. Monoclonal antibodies against infectious microbes: so long and too little! infect disord drug targets. Infect Disord Drug Targets. 2020;21(1):4–27.
  • Henning LN, Carpenter S, Stark GV, Serbina NV. Development of protective immunity in New Zealand white rabbits challenged with bacillus anthracis spores and treated with antibiotics and obiltoxaximab, a monoclonal antibody against protective antigen. Antimicrob Agents Chemother. 2018;62(2). doi:10.1128/AAC.01590-17
  • Nagy CF, Leach TS, King A, Guttendorf R. Safety, pharmacokinetics, and immunogenicity of obiltoxaximab after intramuscular administration to healthy humans. Clin Pharmacol Drug Dev. 2018;7(6):652–660. doi:10.1002/cpdd.41029125719
  • Deeks ED. Bezlotoxumab: a review in preventing clostridium difficile infection recurrence. Drugs. 2017;77(15):1657–1663. doi:10.1007/s40265-017-0809-y28865041
  • Johnson S, Gerding DN. Bezlotoxumab. Clin Infect Dis. 2019;68(4):699–704. doi:10.1093/cid/ciy57730020417
  • Shiu J, Ting G, Kiang TK. Clinical pharmacokinetics and pharmacodynamics of delafloxacin. Eur J Drug Metab Pharmacokinet. 2019;44(3):305–317. doi:10.1007/s13318-018-0520-830324277
  • Bassetti M, Pecori D, Cojutti P, Righi E, Pea F. Clinical and pharmacokinetic drug evaluation of delafloxacin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Drug Metab Toxicol. 2017;13(11):1193–1200. doi:10.1080/17425255.2017.138665428988505
  • Markham A. Delafloxacin: first global approval. Drugs. 2017;77(13):1481–1486. doi:10.1007/s40265-017-0790-528748399
  • Cho JC, Zmarlicka MT, Shaeer KM, Pardo J. Meropenem/vaborbactam, the first carbapenem/β-lactamase inhibitor combination. Ann Pharmacother. 2018;52(8):769–779. doi:10.1177/106002801876328829514462
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(11). doi:10.1128/AAC.01443-17
  • Zhanel GG, Lawrence CK, Adam H, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-Β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98. doi:10.1007/s40265-017-0851-929230684
  • Dhillon S. Meropenem/vaborbactam: a review in complicated urinary tract infections. Drugs. 2018;78(12):1259–1270. doi:10.1007/s40265-018-0966-730128699
  • Ozenoxacin. FDA highlights of prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208945lbl.pdf. Accessed March 24, 2018.
  • Pascale R, Giannella M, Bartoletti M, Viale P, Pea F. Use of meropenem in treating carbapenem-resistant Enterobacteriaceae infections. Expert Rev Anti Infect Ther. 2019;17(10):819–827. doi:10.1080/14787210.2019.167373131559876
  • Saravolatz LD, Stein GE. Plazomicin: a new aminoglycoside. Clin Infect Dis. 2020;70(4):704–709. doi:10.1093/cid/ciz64031328228
  • Zemdri (Plazomicin) FDA highlights of prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303Orig1s000lbl.pdf. Accessed November 27, 2021.
  • Hussar DA. New drugs 2019, part 4. Nursing. 2019;49(11):34–43. doi:10.1097/01.NURSE.0000585892.82614.f4
  • Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections. Drugs. 2019;79(3):243–269. doi:10.1007/s40265-019-1054-330723876
  • Zhanel GG, Cheung D, Adam H, et al. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs. 2016;76(5):567–588. doi:10.1007/s40265-016-0545-826863149
  • Scott LJ. Eravacycline: a review in complicated intra-abdominal infections. Drugs. 2019;79(3):315–324. doi:10.1007/s40265-019-01067-330783960
  • Heaney M, Mahoney MV, Gallagher JC. Eravacycline: the tetracyclines strike back. Ann Pharmacother. 2019;53(11):1124–1135. doi:10.1177/106002801985017331081341
  • Lee YR, Burton CE. Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis. 2019;38(10):1787–1794. doi:10.1007/s10096-019-03590-331175478
  • Moore AY, Del Rosso J, Johnson JL, Grada A. Sarecycline: a review of preclinical and clinical evidence. Clin Cosmet Investig Dermatol. 2020;13:553–560. doi:10.2147/CCID.S190473
  • Moore AY, Charles JEM, Moore S. Sarecycline: a narrow spectrum tetracycline for the treatment of moderate-to-severe acne vulgaris. Future Microbiol. 2019;14(14):1235–1242. doi:10.2217/fmb-2019-019931475868
  • Haidari W, Bruinsma R, Cardenas-de la Garza JA, Feldman SR. Sarecycline review. Ann Pharmacother. 2020;54(2):164–170. doi:10.1177/106002801987311131462063
  • Rodvold KA, Burgos RM, Tan X, Pai MP. Omadacycline: a review of the clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2020;59(4):409–425. doi:10.1007/s40262-019-00843-431773505
  • Gallagher JC. Omadacycline: a modernized tetracycline. Clin Infect Dis. 2019;69(Suppl 1):S1–s5. doi:10.1093/cid/ciz39431367739
  • Zhanel GG, Esquivel J, Zelenitsky S, et al. Omadacycline: a novel oral and intravenous aminomethylcycline antibiotic agent. Drugs. 2020;80(3):285–313. doi:10.1007/s40265-020-01257-431970713
  • Riddle MS, Connor P, Tribble DR. Antibiotics for travellers’ diarrhoea on trial-is there a potential role for rifamycin SV? J Travel Med. 2019;26(1). doi:10.1093/jtm/tay137
  • US Food & Drug Administration; 2018. FDA approves new drug to treat travelers’ diarrhea. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm626121.htm. Accessed November 16, 2018.
  • Hoy SM. Rifamycin SV MMX(®): a review in the treatment of traveller’s diarrhoea. Clin Drug Investig. 2019;39(7):691–697. doi:10.1007/s40261-019-00808-2
  • Ghazi IM, El Nekidy WS, Asay R, Fimognari P, Knarr A, Awad M. Simultaneous administration of imipenem/cilastatin/relebactam with selected intravenous antimicrobials, a stewardship approach. PLoS One. 2020;15(5):e0233335. doi:10.1371/journal.pone.023333532421696
  • Thakare R, Dasgupta A, Chopra S. Imipenem/cilastatin sodium/relebactam fixed combination to treat urinary infections and complicated intra-abdominal bacterial infections. Drugs Today (Barc). 2020;56(4):241–255. doi:10.1358/dot.2020.56.4.307579632309820
  • Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–6243. doi:10.1128/AAC.00633-1627503659
  • Singh R, Manjunatha U, Boshoff HI, et al. Pa-824 kills nonreplicating mycobacterium tuberculosis by intracellular no release. Science. 2008;322(5906):1392–1395. doi:10.1126/science.116457119039139
  • Pretomanid tablets: us prescribing information. Available from: https://www.fda.gov/. Accessed August 27, 2019.
  • Conradie A, Everitt D, Mendel C, et al. Sustained high rate of successful treatment outcomes: interim results of 75 patients in the Nix-TB clinical study of pretomanid, bedaquiline and linezolid [Abstract No. Oa03-213-25 and presentation]. Int J Tuberc Lung Dis. 2018;22(Suppl.2):S69.
  • Keam SJ. Pretomanid: first approval. Drugs. 2019;79(16):1797–1803. doi:10.1007/s40265-019-01207-931583606
  • El-Lababidi RM, Rizk JG. Cefiderocol: a siderophore cephalosporin. Ann Pharmacother. 2020;54(12):1215–1231. doi:10.1177/106002802092998832522005
  • FDA Fetroja (Cefiderocol) for injection, for intravenous use. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pdf. Accessed November 14, 2019.
  • Zhanel GG, Golden AR, Zelenitsky S, et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs. 2019;79(3):271–289. doi:10.1007/s40265-019-1055-230712199
  • Choi JJ, McCarthy MW. Cefiderocol: a novel siderophore cephalosporin. Expert Opin Investig Drugs. 2018;27(2):193–197. doi:10.1080/13543784.2018.1426745
  • Tang HJ, Wang JH, Lai CC. Lefamulin vs moxifloxacin for community-acquired bacterial pneumonia. Medicine (Baltimore). 2020;99(29):e21223. doi:10.1097/MD.000000000002122332702892
  • Veve MP, Wagner JL. Lefamulin: review of a promising novel pleuromutilin antibiotic. Pharmacotherapy. 2018;38(9):935–946. doi:10.1002/phar.216630019769
  • Zhanel GG, Deng C, Zelenitsky S, et al. Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs. 2021;81(2):233–256. doi:10.1007/s40265-020-01443-4
  • Koulenti D, Song A, Ellingboe A, et al. Infections by multidrug-resistant gram-negative bacteria: what’s new in our arsenal and what’s in the pipeline? Int J Antimicrob Agents. 2019;53(3):211–224. doi:10.1016/j.ijantimicag.2018.10.01130394301
  • Livermore DM, Mushtaq S, Meunier D, et al. Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, pseudomonas aeruginosa and non-fermenters from the British Isles. J Antimicrob Chemother. 2017;72(8):2278–2289. doi:10.1093/jac/dkx13628520867
  • Seifert H, Körber-Irrgang B, Kresken M. In-vitro activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates recovered from hospitalized patients in Germany. Int J Antimicrob Agents. 2018;51(2):227–234. doi:10.1016/j.ijantimicag.2017.06.02428705666
  • Cluck D, Lewis P, Stayer B, Spivey J, Moorman J. Ceftolozane-tazobactam: a new-generation cephalosporin. Am J Health Syst Pharm. 2015;72(24):2135–2146. doi:10.2146/ajhp15004926637512
  • Pfaller MA, Shortridge D, Sader HS, Castanheira M, Flamm RK. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and pseudomonas aeruginosa causing healthcare-associated infections in the Asia-Pacific region (Minus China, Australia and New Zealand): report from an Antimicrobial Surveillance Programme (2013–2015). Int J Antimicrob Agents. 2018;51(2):181–189. doi:10.1016/j.ijantimicag.2017.09.01628993143
  • Livermore DM, Meunier D, Hopkins KL, et al. Activity of ceftazidime/avibactam against problem Enterobacteriaceae and Pseudomonas aeruginosa in the UK, 2015–16. J Antimicrob Chemother. 2018;73(3):648–657. doi:10.1093/jac/dkx43829228202
  • Bassetti M, Labate L, Vena A, Giacobbe DR. Role or oritavancin and dalbavancin in acute bacterial skin and skin structure infections and other potential indications. Curr Opin Infect Dis. 2021;34(2):96–108. doi:10.1097/QCO.000000000000071433405480
  • Wang Y, Wang J, Wang R, Li Y, Cai Y. Efficacy and safety of dalbavancin in the treatment of gram-positive bacterial infections. J Glob Antimicrob Resist. 2020;24:72–80. doi:10.1016/j.jgar.2020.11.01833279683
  • Bongiorno D, Lazzaro LM, Stefani S, Campanile F. In vitro activity of dalbavancin against refractory multidrug-resistant (MDR) Staphylococcus aureus isolates. Antibiotics (Basel). 2020;9(12). doi:10.3390/antibiotics9120865
  • Zahornacký O, Novotný M. [Dalbavancin and its use in the treatment of methicillin-resistant Staphylococcus aureus - induced upper limb phlegmon]. Klin Mikrobiol Infekc Lek. 2020;26(2):51–53. Slovak.33389741
  • Meyer J, Lata P, Barnett S. Continued dosing of oritavancin for complicated gram-positive infections. Fed Pract. 2020;37(11):502–504. doi:10.12788/fp.006833328715
  • Dretske D, Schulz L, Werner E, Sharp B, Pulia M. Effectiveness of oritavancin for management of skin and soft tissue infections in the emergency department: a case series. Am J Emerg Med. 2021;43:77–80. doi:10.1016/j.ajem.2021.01.05033545550
  • US Food & Drug Administration; 2021. Antimicrobial resistance information from FDA. Available from: https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/antimicrobial-resistance-information-fda#top. Accessed November 24, 2021.
  • Brownell LE, Adamsick ML, McCreary EK, et al. Clinical outcomes and economic impact of oritavancin for gram-positive infections: a single academic medical center health system experience. Drugs Real World Outcomes. 2020;7(Suppl 1):13–19. doi:10.1007/s40801-020-00192-w32592120
  • Melinta Therapeutics LLC; 2021.Kimyrsa™ (Oritavancin) for injection [Prescribing information]. Available from: https://melintamedicalinformation.com/Media/PI/KIMYRSA%20Prescribing%20Information%2007%202021.pdf. Accessed July 29, 2018.
  • Loza E, Sarciaux M, Ikaunieks M, et al. Structure-activity relationship studies on the inhibition of the bacterial translation of novel odilorhabdins analogues. Bioorg Med Chem. 2020;28(11):115469. doi:10.1016/j.bmc.2020.11546932279921
  • Racine E, Gualtieri M. From worms to drug candidate: the story of odilorhabdins, a new class of antimicrobial agents. Front Microbiol. 2019;10:2893. doi:10.3389/fmicb.2019.0289331921069
  • Pantel L, Florin T, Dobosz-Bartoszek M, et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell. 2018;70(1):83–94.e87. doi:10.1016/j.molcel.2018.03.00129625040
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. doi:10.3390/molecules25061340
  • Jin K, Po KHL, Wang S, et al. Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser Ligation. Bioorg Med Chem. 2017;25(18):4990–4995. doi:10.1016/j.bmc.2017.04.03928495382
  • Guo C, Mandalapu D, Ji X, Gao J, Zhang Q. Chemistry and biology of teixobactin. Chemistry. 2018;24(21):5406–5422. doi:10.1002/chem.20170416728991382
  • Liu Y, Liu Y, Chan-Park MB, Mu Y. Binding modes of teixobactin to lipid II: molecular dynamics study. Sci Rep. 2017;7(1):17197. doi:10.1038/s41598-017-17606-529222455
  • Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–459. doi:10.1038/nature1409825561178
  • Huanyun Z, Ruijuan L. Research progress of a new antibiotic teixobactin that is not easy to induce resistance. Chin J Antibiot. 2019;44(01):9–17.
  • Jin K, Sam IH, Po KHL, et al. Total synthesis of teixobactin. Nat Commun. 2016;7:12394. doi:10.1038/ncomms1239427484680
  • Giltrap AM, Dowman LJ, Nagalingam G, et al. Total synthesis of teixobactin. Org Lett. 2016;18(11):2788–2791. doi:10.1021/acs.orglett.6b0132427191730
  • Parmar A, Lakshminarayanan R, Iyer A, et al. Design and syntheses of highly potent teixobactin analogues against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) in vitro and in vivo. J Med Chem. 2018;61(5):2009–2017. doi:10.1021/acs.jmedchem.7b0163429363971
  • Liu J, Smith PA, Steed DB, Romesberg F. Efforts toward broadening the spectrum of arylomycin antibiotic activity. Bioorg Med Chem Lett. 2013;23(20):5654–5659. doi:10.1016/j.bmcl.2013.08.02624012184
  • Smith PA, Koehler MFT, Girgis HS, et al. Optimized arylomycins are a new class of gram-negative antibiotics. Nature. 2018;561(7722):189–194. doi:10.1038/s41586-018-0483-630209367
  • Lam YC, Crawford JM. Discovering antibiotics from the global microbiome. Nat Microbiol. 2018;3(4):392–393. doi:10.1038/s41564-018-0135-529588534
  • Kleijn LH, Oppedijk SF, Hart P, et al. Total synthesis of laspartomycin C and characterization of its antibacterial mechanism of action. J Med Chem. 2016;59(7):3569–3574. doi:10.1021/acs.jmedchem.6b0021926967152
  • Hover BM, Kim SH, Katz M, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant gram-positive pathogens. Nat Microbiol. 2018;3(4):415–422. doi:10.1038/s41564-018-0110-129434326
  • Hart EM, Mitchell AM, Konovalova A, et al. A small-molecule inhibitor of bama impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci U S A. 2019;116(43):21748–21757. doi:10.1073/pnas.191234511631591200
  • Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576(7787):459–464. doi:10.1038/s41586-019-1791-131747680
  • Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.e613. doi:10.1016/j.cell.2020.01.02132084340
  • Stokes JM, Gutierrez A, Lopatkin AJ, et al. A multiplexable assay for screening antibiotic lethality against drug-tolerant bacteria. Nat Methods. 2019;16(4):303–306. doi:10.1038/s41592-019-0333-y30858599
  • Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17(7):441–448. doi:10.1038/s41579-019-0196-330980069
  • Böhringer N, Patras MA, Schäberle TF. Heterologous expression of pseudouridimycin and description of the corresponding minimal biosynthetic gene cluster. Molecules. 2021;26(2):510. doi:10.3390/molecules2602051033478059
  • Chellat MF, Riedl R. Pseudouridimycin: the first nucleoside analogue that selectively inhibits bacterial RNA polymerase. Angew Chem Int Ed Engl. 2017;56(43):13184–13186. doi:10.1002/anie.20170813328895263
  • O’Malley PA. Pseudouridimycin: light in the darkness of antimicrobial resistance. Clin Nurse Spec. 2018;32(3):114–115. doi:10.1097/NUR.000000000000036729621104
  • Maffioli SI, Zhang Y, Degen D, et al. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell. 2017;169(7):1240–1248.e1223. doi:10.1016/j.cell.2017.05.04228622509
  • Krasavin M, Trifonov RE, Tolstyakov VV, et al. 5-methyl-7-(3-Nitro-[1,2,4]Triazol-1-Yl)-[1,2,4]Triazolo[1,5-a]Pyrimidine, having anti-tuberculosis activity against the agent with multiple drug resistance, and a method for production thereof. Chem. 2019;171:563769.
  • Chuprun S, Dar’in D, Rogacheva E, et al. Mutually isomeric 2- and 4-(3-Nitro-1,2,4-Triazol-1-Yl)pyrimidines inspired by an antimycobacterial screening hit: synthesis and biological activity against the eskape panel of pathogens. Antibiotics (Basel). 2020;9(10). doi:10.3390/antibiotics9100666
  • Deming Z, Taiping H, Sanqi Z, Ningren J. Synthesis process optimization of methoxycephalosporin intermediate 7-amca. Guangzhou Chem Indust. 2009;37(09):80–83.
  • Yan R, Ning J, Yuan W. (6s) or (7s)-methoxy Β-lactam antibiotics. Foreign Med. 2007;6:252–258+276.
  • Shaohua L, Wei W, Zengying H, Hongming L, Shenghua C, Xiaodong D. Improvement of synthesis process of methoxef intermediate 7-MAC. Chem Res Appl. 2013;25(04):547–549.
  • Kuailin S, Runsun L, Xinghan L. Studies on Β-lactam antibiotics——II. Synthesis of 7-substituted azide cephalosporins and 7α-methoxy-7β substituted hydrazone cephalosporins. Antibiotics. 1985;3:165–166.
  • Lili T, Li W, Jiaxin L, Dacheng W, Feng G, Lin W. Evaluation of the antibacterial activity of a new cephalosporin compound NAC-3 and its in vivo protection against MRSA infections. Chin J Vet Med. 2020;40(08):1571–1578.
  • Serafim MSM, Lavorato SN, Kronenberger T, et al. Antibacterial activity of synthetic 1,3-Bis(Aryloxy)propan-2-amines against gram-positive bacteria. Microbiologyopen. 2019;8(11):e814. doi:10.1002/mbo3.81430773849
  • Barman S, Konai MM, Samaddar S, Haldar J. Amino acid conjugated polymers: antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS Appl Mater Interfaces. 2019;11(37):33559–33572. doi:10.1021/acsami.9b0901631424189
  • Mukherjee I, Ghosh A, Bhadury P, De P. Side-chain amino acid-based cationic antibacterial polymers: investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega. 2017;2(4):1633–1644. doi:10.1021/acsomega.7b0018130023640
  • Jean SS, Gould IM, Lee WS, Hsueh PR. New drugs for multidrug-resistant gram-negative organisms: time for stewardship. Drugs. 2019;79(7):705–714. doi:10.1007/s40265-019-01112-130972660
  • Hamrick JC, Docquier JD, Uehara T, et al. Vnrx-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-Β-lactamases, restores activity of cefepime in enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64(3). doi:10.1128/AAC.01963-19
  • Wang X, Zhao C, Wang Q, et al. In vitro activity of the novel Β-lactamase inhibitor taniborbactam (Vnrx-5133), in combination with cefepime or meropenem, against MDR gram-negative bacterial isolates from China. J Antimicrob Chemother. 2020;75(7):1850–1858. doi:10.1093/jac/dkaa05332154866
  • Thwaites M, Hall D, Stoneburner A, et al. Activity of plazomicin in combination with other antibiotics against multidrug-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis. 2018;92(4):338–345. doi:10.1016/j.diagmicrobio.2018.07.00630097297
  • Procópio TF, Moura MC, Bento EFL, et al. Looking for alternative treatments for bovine and caprine mastitis: evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (Casul), both alone and in combination with antibiotics. Microbiologyopen. 2019;8(11):e869. doi:10.1002/mbo3.86931099495
  • Breidenstein EB, de la Fuente-núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–426. doi:10.1016/j.tim.2011.04.00521664819
  • Yang X, Goswami S, Gorityala BK, et al. A tobramycin vector enhances synergy and efficacy of efflux pump inhibitors against multidrug-resistant gram-negative bacteria. J Med Chem. 2017;60(9):3913–3932. doi:10.1021/acs.jmedchem.7b0015628399372
  • Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med. 2011;13:e5. doi:10.1017/S146239941000176621342612
  • Brown D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov. 2015;14(12):821–832. doi:10.1038/nrd467526493767
  • Gill EE, Franco OL, Hancock RE. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des. 2015;85(1):56–78. doi:10.1111/cbdd.1247825393203
  • Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo). 2013;66(10):571–591. doi:10.1038/ja.2013.8624002361
  • Bagińska N, Pichlak A, Górski A, Jończyk-Matysiak E. Specific and selective bacteriophages in the fight against multidrug-resistant Acinetobacter baumannii. Virol Sin. 2019;34(4):347–357. doi:10.1007/s12250-019-00125-031093881
  • Gordillo Altamirano F, Forsyth JH, Patwa R, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol. 2021;6(2):157–161. doi:10.1038/s41564-020-00830-733432151
  • Souli M, Galani I, Boukovalas S, et al. In vitro interactions of antimicrobial combinations with fosfomycin against KPC-2-producing Klebsiella pneumoniae and protection of resistance development. Antimicrob Agents Chemother. 2011;55(5):2395–2397. doi:10.1128/AAC.01086-1021321144
  • Williams PC. Potential of fosfomycin in treating multidrug-resistant infections in children. J Paediatr Child Health. 2020;56(6):864–872. doi:10.1111/jpc.1488332294306
  • Theuretzbacher U, Van Bambeke F, Cantón R, et al. Reviving old antibiotics. J Antimicrob Chemother. 2015;70(8):2177–2181. doi:10.1093/jac/dkv15726063727
  • Rigatto MH, Falci DR, Zavascki AP. Clinical use of polymyxin B. Adv Exp Med Biol. 2019;1145:197–218.31364080
  • Garg SK, Singh O, Juneja D, et al. Resurgence of polymyxin B for MDR/XDR gram-negative infections: an overview of current evidence. Crit Care Res Pract. 2017;2017:3635609. doi:10.1155/2017/363560928761764
  • Hortle E, Johnson KE, Johansen MD, et al. Thrombocyte inhibition restores protective immunity to mycobacterial infection in zebrafish. J Infect Dis. 2019;220(3):524–534. doi:10.1093/infdis/jiz11030877311
  • Pribis JP, García-Villada L, Zhai Y, et al. Gamblers: an antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol Cell. 2019;74(4):785–800.e787. doi:10.1016/j.molcel.2019.02.03730948267
  • Guachalla LM, Stojkovic K, Hartl K, et al. Discovery of monoclonal antibodies cross-reactive to novel subserotypes of K. Pneumoniae O3 Sci Rep. 2017;7(1):6635. doi:10.1038/s41598-017-06682-228747785
  • Rollenske T, Szijarto V, Lukasiewicz J, et al. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat Immunol. 2018;19(6):617–624. doi:10.1038/s41590-018-0106-229760533
  • Förster B, Chung PK, Crobach MJT, Kuijper EJ. Application of antibody-mediated therapy for treatment and prevention of clostridium difficile infection. Front Microbiol. 2018;9:1382. doi:10.3389/fmicb.2018.0138229988597
  • Helbig ET, Opitz B, Sander LE. Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy. 2013;5(4):365–381. doi:10.2217/imt.13.1723557420
  • Akbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids. 2018;50(9):1231–1243. doi:10.1007/s00726-018-2596-529905903
  • Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv. 2020;6(18):eaay6817. doi:10.1126/sciadv.aay681732426473
  • Khara JS, Obuobi S, Wang Y, et al. Disruption of drug-resistant biofilms using de novo designed short Α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomater. 2017;57:103–114. doi:10.1016/j.actbio.2017.04.03228457962
  • Li SA, Lee WH, Zhang Y. Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother. 2012;56(6):3309–3317. doi:10.1128/AAC.06304-1122491685
  • Zhao F, Lan XQ, Du Y, et al. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool Res. 2018;39(2):87–96. doi:10.24272/j.issn.2095-8137.2018.02529515090
  • Sun H, Wei C, Liu B, et al. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. Int J Nanomedicine. 2015;10:7275–7290. doi:10.2147/IJN.S9152926664118
  • Pierpaoli E, Orlando F, Cirioni O, Simonetti O, Giacometti A, Provinciali M. Supplementation with tocotrienols from bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound. Phytomedicine. 2017;36:50–53. doi:10.1016/j.phymed.2017.09.01129157827
  • Mayaud L, Carricajo A, Zhiri A, Aubert G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett Appl Microbiol. 2008;47(3):167–173. doi:10.1111/j.1472-765X.2008.02406.x19552780
  • Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother. 2003;47(10):3357–3360. doi:10.1128/AAC.47.10.3357-3360.200314506058
  • Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016;2016:3012462. doi:10.1155/2016/301246228090211
  • Süntar I, Akkol EK, Keleş H, et al. Healing ointment: a formulation of hypericum perforatum oil and sage and oregano essential oils based on traditional Turkish knowledge. J Ethnopharmacol. 2011;134(1):89–96. doi:10.1016/j.jep.2010.11.06121130859
  • Zhou Y, Xie M, Song Y, et al. Two traditional Chinese medicines curcumae radix and curcumae rhizoma: an ethnopharmacology, phytochemistry, and pharmacology review. Evid Based Complement Alternat Med. 2016;2016:4973128. doi:10.1155/2016/497312827057197
  • Tariq S, Wani S, Rasool W, et al. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019;134:103580. doi:10.1016/j.micpath.2019.10358031195112
  • Yap PS, Yiap BC, Ping HC, Lim SH. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J. 2014;8:6–14. doi:10.2174/187428580140801000624627729
  • Lahmar A, Bedoui A, Mokdad-Bzeouich I, et al. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb Pathog. 2017;106:50–59. doi:10.1016/j.micpath.2016.10.01827815129
  • Solórzano-Santos F, Miranda-Novales MG. Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):136–141. doi:10.1016/j.copbio.2011.08.00521903378
  • Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: can essential oils come to the rescue? Fitoterapia. 2020;140:104433. doi:10.1016/j.fitote.2019.10443331760066
  • Oliva A, Costantini S, De Angelis M, et al. High potency of melaleuca alternifolia essential oil against multi-drug resistant gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Molecules. 2018;23(10):2584. doi:10.3390/molecules23102584
  • Marchitto MC, Dillen CA, Liu H, et al. Clonal Vγ6(+)Vδ4(+) T cells promote Il-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A. 2019;116(22):10917–10926. doi:10.1073/pnas.181825611631088972
  • Raz A, Serrano A, Lawson C, et al. Lysibodies Are Igg Fc fusions with lysin binding domains targeting Staphylococcus aureus wall carbohydrates for effective phagocytosis. Proc Natl Acad Sci U S A. 2017;114(18):4781–4786. doi:10.1073/pnas.161924911428428342
  • Raz A, Serrano A, Thaker M, Alston T, Fischetti VA. Lysostaphin lysibody leads to effective opsonization and killing of methicillin-resistant Staphylococcus aureus in a murine model. Antimicrob Agents Chemother. 2018;62(10). doi:10.1128/AAC.01056-18
  • Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. 2014;68(1):13–23. doi:10.1007/s00248-013-0316-y24194099
  • Tonkin M, Khan S, Wani MY, Ahmad A. Quorum sensing - a stratagem for conquering multi-drug resistant pathogens. Curr Pharm Des. 2020. doi:10.2174/1381612826666201210105638
  • Shaaban M, Elgaml A, Habib EE. Biotechnological applications of quorum sensing inhibition as novel therapeutic strategies for multidrug resistant pathogens. Microb Pathog. 2019;127:138–143. doi:10.1016/j.micpath.2018.11.04330503958
  • Kumar M, Saxena M, Saxena AK, Nandi S. Recent breakthroughs in various antimicrobial resistance induced quorum sensing biosynthetic pathway mediated targets and design of their inhibitors. Comb Chem High Throughput Screen. 2020;23(6):458–476. doi:10.2174/138620732366620042520580832334498
  • Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol. 2015;17(4):1275–1285. doi:10.1111/1462-2920.1256725041421
  • Wang Y, Tian T, Zhang J, et al. Indole reverses intrinsic antibiotic resistance by activating a novel dual-function importer. mBio. 2019;10(3). doi:10.1128/mBio.00676-19
  • Brix A, Cafora M, Aureli M, Pistocchi A. Animal models to translate phage therapy to human medicine. Int J Mol Sci. 2020;21(10):3715. doi:10.3390/ijms21103715
  • Fischetti VA. Development of phage lysins as novel therapeutics: a historical perspective. Viruses. 2018;10(6):310. doi:10.3390/v10060310
  • Jeon J, Park JH, Yong D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol. 2019;19(1):70. doi:10.1186/s12866-019-1443-530940074
  • Karaiskos I, Galani I, Souli M, Giamarellou H. Novel Β-lactam-Β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019;15(2):133–149. doi:10.1080/17425255.2019.156307130626244
  • Giacobbe DR, Mikulska M, Viscoli C. Recent advances in the pharmacological management of infections due to multidrug-resistant gram-negative bacteria. Expert Rev Clin Pharmacol. 2018;11(12):1219–1236. doi:10.1080/17512433.2018.154948730444147
  • Han JW, Choi GJ, Kim BS. Antimicrobial aromatic polyketides: a review of their antimicrobial properties and potential use in plant disease control. World J Microbiol Biotechnol. 2018;34(11):163. doi:10.1007/s11274-018-2546-030368604
  • Chen J, Li X, Li L, et al. Coagulation factors Vii, Ix and X are effective antibacterial proteins against drug-resistant gram-negative bacteria. Cell Res. 2019;29(9):711–724. doi:10.1038/s41422-019-0202-331399697
  • Li C, You X. Coagulation factors: a novel class of endogenous host antimicrobial proteins against drug-resistant gram-negative bacteria. Signal Transduct Target Ther. 2019;4:46. doi:10.1038/s41392-019-0083-431728211
  • Hegeto LA, Caleffi-Ferracioli KR, Perez de Souza J, et al. Promising antituberculosis activity of piperine combined with antimicrobials: a systematic review. Microb Drug Resist. 2019;25(1):120–126. doi:10.1089/mdr.2018.010730096263
  • Orenstein R, Patron RL, Seville MT. Why does clostridium difficile infection recur? J Am Osteopath Assoc. 2019;119(5):322–326. doi:10.7556/jaoa.2019.05431034070
  • Dieltjens L, Appermans K, Lissens M, et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat Commun. 2020;11(1):107. doi:10.1038/s41467-019-13660-x31919364
  • Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ. Cell wall peptidoglycan architecture in bacillus subtilis. Proc Natl Acad Sci U S A. 2008;105(38):14603–14608. doi:10.1073/pnas.080413810518784364
  • Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ. Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun. 2010;1:26. doi:10.1038/ncomms102520975691
  • Pasquina-Lemonche L, Burns J, Turner RD, et al. The architecture of the gram-positive bacterial cell wall. Nature. 2020;582(7811):294–297. doi:10.1038/s41586-020-2236-632523118
  • U.S. Department of Health and Human Services; Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States; 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed March 2, 2021.