221
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Limited Polymorphism in Plasmodium falciparum Artemisinin Resistance Kelch13-Propeller Gene Among Clinical Isolates from Bushenyi District, Uganda

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 5153-5163 | Published online: 06 Dec 2021

References

  • National Malaria Control Division. National malaria annual report 2017–2018. Kampala, Uganda: Ministry of Health; 2019.
  • World malaria report 2020. Geneva: World Health Organization; 2020.
  • Kamau E, Campino S, Amenga EL. K13-propeller polymorphisms in Plasmodium falciparum parasites from Sub-Saharan Africa. J Infect Dis. 2015;8:1352–1355.
  • Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm. Lancet Infect Dis. 2019;9:1371–1380.
  • Miotto O, Sekihara M, Tachibana S-I, et al. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathog. 2020;6:123–128.
  • Siddiqui FA, Boonhok R, Cabrera M, et al. Role of Plasmodium falciparum Kelch 13 protein mutations in P. falciparum populations from northeastern Myanmar in mediating artemisinin resistance. MBio. 2020;11:1–9.
  • Mbengue A, Bhattacharjee S, Pandharkar T. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683–687. doi:10.1038/nature1441225874676
  • Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010–2019). Geneva: World Health Organization; 2020.
  • World Health Organization. World Malaria Report, 2020 summary; 2015. Available from: https://www.who.int/publications/i/item/9789240015791. Assessed 30 March, 2021.
  • WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—A WWARN individual patient data meta-analysis. BMC Med. 2019;17:1.30651111
  • Conrad MD, Bigira V, Kapisi J. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One. 2014;9:1371–1380. doi:10.1371/journal.pone.0105690
  • Ocan F, Bwanga F, Okeng A. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis. 2016;16:1–9.26729246
  • Balikagala B, Naoyuki F, Ikeda M, Katuro O, Tachibana S, Yamauchi M. Evidence of Artemisinin-Resistant Malaria in Africa. N Engl J Med. 2021;385:1163–1171.34551228
  • Tumwebaze P, Katairo T, Okitwi M, et al. Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study. Lancet Microbe. 2021;2:441–449.
  • Mutagonda RF, Appolinary AR, Omary MS. Malaria prevalence, severity and treatment outcome in relation to day 7 lumefantrine plasma concentration in pregnant women in Tanzania. Nat Rev Neurol. 2016;10:1–10.
  • Taylor SM, Parobek CM, DeConti DK. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis. 2015;5:680–688.
  • Boussaroque A, Fall M, Madamet M. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. Antimicrob Agents Chemother. 2016;15:1–8.
  • Maiga AW, Fofana B, Sagara I. No evidence of delayed parasite clearance after oral artesunate treatment of uncomplicated falciparum malaria in Mali. Am J Trop Med Hygiene. 2012;5:12–19.
  • Lu F, Culleton R, Zhang M. Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. Engl J Med. 2017;376:991–993. doi:10.1056/NEJMc1612765
  • Nzoumbou R, Gildas CP, Wockama P. Molecular assessment of kelch13 non‑synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017–2019). BMC Inf Dis. 2020;6:18–25.
  • Ashley EA, Dhorda M, Fairhurst RM. Tracking spread of artemisinin resistance in Plasmodium falciparum malaria. Engl J Med. 2014;371:411–423. doi:10.1056/NEJMoa1314981
  • Kézia KG, Cor JF, Álvaro C, Maria F, Érika M. Low sensitivity of nested PCR using Plasmodium DNA extracted from stained thick blood smears: an epidemiological retrospective study among subjects with low parasitaemia in an endemic area of the Brazilian Amazon region. Malar J. 2004;3:7–16. doi:10.1186/1475-2875-3-715025790
  • Talundzic E, Okoth SA, Congpuong K. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog. 2015;11:4–9.
  • Miotto O, Sekihara M, Tachibana S-I, et al. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathog. 2020;12:109–133.
  • Ocan M, Bwanga F, Okeng A. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis. 2016;16:1–9. doi:10.1186/s12879-016-1777-726729246
  • Hawkes MK, Conroy AL, Opoka RO. Slow clearance of Plasmodium falciparum in severe pediatric Malaria, Uganda, 2011–2013. Emerg Infect. 2015;21:1237–1239. doi:10.3201/eid2107.150213
  • Fatima D, Voumbo M, Kouna C, et al. Prevalence of Plasmodium falciparum antimalarial drug resistance genes in Southeastern Gabon from 2011 to 2014. Infect Drug Resist. 2018;6:1–9.
  • Yang C, Zhang H, Zhou R. Polymorphisms of Plasmodium falciparum K13-propeller gene among migrant workers returning to Henan Province, China from Africa. BMC Infect Dis. 2017;17. doi:10.1186/s12879-017-2634-z
  • Cooper A, Conrad MD, Watson QD. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother. 2015;59:5061–5064. doi:10.1128/AAC.00921-1526033725
  • Asua V, Vinden J, Conrad MD, et al. Changing molecular markers of antimalarial drug sensitivity across Uganda. Antimicrob Agents Chemother. 2019;3:1818–1824.
  • Asua V, Conrad MD, Aydemir O, et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J Infect Dis. 2021;223:985–994. doi:10.1093/infdis/jiaa68733146722
  • Yeka A, Dorsey G, Kamya MR. Artemether-lumefantrine versus dihydro artemisinin-piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS One. 2008;3:184–195. doi:10.1371/journal.pone.0002390
  • Dorsey G, Staedke S, Clark TD. Combination therapy for uncomplicated falciparum malaria in Ugandan children: a randomized trial. J Malaria. 2007;3:5–12.
  • Nzoumbou R, Gildas CB, Wockama P. Molecular assessment of Kelch13 non‑synonymous mutations in Plasmodium falciparum isolates from Central African Republic (2017–2019). BMC Inf. 2020;4:10–19.
  • silva M, Ferreira PE, Otienoburu SD, et al. Plasmodium falciparum K13 expression associated with parasite clearance during artemisinin-based combination therapy. J Antimicrob Chemother. 2019;18:90–93.
  • Tacoli C, Gai PP, Bayingana C. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010–2015. Am J Trop Med Hyg. 2016;5:1090–1093. doi:10.4269/ajtmh.16-0483
  • Ikeda M, Kaneko M, Tachibana SI. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis. 2018;24:718–726. doi:10.3201/eid2404.17014129553316
  • Maniga JN, Aliero AA, Ibrahim N, Okech MA, Mugasa CM. Plasmodium falciparum malaria clinical and parasitological outcomes after in-vivo Artemether- Lumefantrine (AL) treatment at Bushenyi District Uganda. Int J Trop Dis Health. 2018;8:10–18.
  • Rasmussen SA, Ceja FG, Conrad MD, et al. Changing antimalarial drug sensitivities in Uganda. Antimicrob Agents Chemother. 2017;3:121–129.
  • Yeka A, Wallender E, Mulebeke R, et al. Comparative efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated malaria in Ugandan children. J Infect Dis. 2019;219:1112–1120. doi:10.1093/infdis/jiy63730418593