141
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Disulfiram Enhances the Activity of Polymyxin B Against Klebsiella pneumoniae by Inhibiting Lipid A Modification

ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , & show all
Pages 295-306 | Published online: 26 Jan 2022

References

  • Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep. 2017;34(7):886–908. doi:10.1039/c7np00023e
  • Nation RL, Li J, Cars O, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis. 2015;15(2):225–234. doi:10.1016/S1473-3099(14)70850-3
  • Kelesidis T, Falagas ME. The safety of polymyxin antibiotics. Expert Opin Drug Saf. 2015;14(11):1–15. doi:10.1517/14740338.2015.1088520
  • Justo JA, Bosso JA. Adverse reactions associated with systemic polymyxin therapy. J Pharmacother. 2015;35(1):28–33. doi:10.1002/phar.1493
  • Bialvaei AZ, Kafil HS. Colistin, mechanisms and prevalence of resistance. J Curr Med Res Opin. 2015;31(4):707–721. doi:10.1185/03007995.2015.1018989
  • Ah Y, Kim A, Lee J. Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents. 2014;44(1):8–15. doi:10.1016/j.ijantimicag.2014.02.016
  • Gales AC, Jones RN, Sader S. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother. 2011;66(9):2070–2074. doi:10.1093/jac/dkr239
  • Bernal P, Molina-Santiago C, Daddaoua A, et al. Antibiotic adjuvants: identification and clinical use. Microb Biotechnol. 2013;6:445–449. doi:10.1111/1751-7915.12044
  • Gill EE, Franco OL, Hancock RE. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des. 2015;85(1):56–78. doi:10.1111/cbdd.12478
  • Kalan L, Wright GD. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev Mol Med. 2011;13(13):e5. doi:10.1017/S1462399410001766
  • Wright G. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 2016;24:862–871. doi:10.1016/j.tim.2016.06.009
  • Worthington RJ. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013;31(3):177–184. doi:10.1016/j.tibtech.2012.12.006
  • Brown D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov. 2015;14(12):821–832. doi:10.1038/nrd4675
  • Gunn JS, Lim KB, Krueger J, et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol. 1998;27(6):1171–1182. doi:10.1046/j.1365-2958
  • Raetz CR. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. doi:10.1146/annurev.biochem.71.110601.135414
  • Gatzeva-Topalova PZ, May AP, Sousa MC. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-l-arabinose and polymyxin resistance. Biochemistry. 2004;43(42):13370–13379. doi:10.1021/bi048551f
  • Gatzeva-Topalova PZ, May AP, Sousa MC. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure. 2005;13(6):929–942. doi:10.1016/j.str.2005.03.018
  • Odds F. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1–11. doi:10.1093/jac/dkg301
  • Zhou Z, Lin S, Cotter RJ, et al. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate. J Biol Chem. 1999;274(26):18503–18514. doi:10.1074/jbc.274.26.18503
  • Aye SM, Galani I, Han ML, et al. Lipid A profiling and metabolomics analysis of paired polymyxin-susceptible and -resistant MDR Klebsiella pneumoniae clinical isolates from the same patients before and after colistin treatment. J Antimicrob Chemother. 2020;75(10):2852–2863. doi:10.1093/jac/dkaa245
  • Henderson JC, O’Brien JP, Brodbelt JS, et al. Isolation and chemical characterization of lipid A from gram-negative bacteria. J Vis Exp. 2013;16(79):e50623. doi:10.3791/50623
  • Mandler MD, Baidin V, Lee J, et al. Novobiocin enhances polymyxin activity by stimulating lipopolysaccharide transport. J Am Chem Soc. 2018;140(22):6749–6753. doi:10.1021/jacs.8b02283
  • Moffatt JH, Harper M, Boyce JD. Mechanisms of polymyxin resistance. Adv Exp Med Biol. 2019;1145:55–71. doi:10.1007/978-3-030-16373-0_5
  • Moskowitz SM, Brannon MK, Dasgupta N, et al. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56(2):1019–1030. doi:10.1128/AAC.05829-11
  • Nummila K, Kilpeläinen I, Zähringer U, et al. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol. 1995;16(2):271–278. doi:10.1111/j.1365-2958.1995.tb02299.x
  • Ernst RK, Yi EC, Guo L, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science. 1999;286(5444):1561–1565. doi:10.1126/science.286.5444.1561
  • Jörnvall H, Persson B, Krook M, et al. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995;34(18):6003–6013. doi:10.1021/bi00018a001
  • Breazeale SD, Ribeiro AA, McClerren AL, et al. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem. 2005;280(14):14154–14167. doi:10.1074/jbc.M414265200
  • Johansson B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand Suppl. 1992;369:15–26. doi:10.1111/j.1600-0447.1992.tb03310.x
  • Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552(7684):194–199. doi:10.1038/nature25016
  • Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736–745. doi:10.1038/s41590-020-0669-6
  • Shen ML, Johnson KL, Mays DC, et al. Determination of in vivo adducts of disulfiram with mitochondrial aldehyde dehydrogenase. Biochem Pharmacol. 2001;61(5):537–545. doi:10.1016/s0006-2952(00)00586-4
  • Cheng YH, Lin TL, Pan YJ, et al. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother. 2015;59(5):2909–2913. doi:10.1128/AAC.04763-14
  • Wright MS, Suzuki Y, Jones MB, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother. 2015;59(1):536–543. doi:10.1128/AAC.04037-14
  • De Majumdar S, Yu J, Fookes M, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog. 2015;11(1):e1004627. doi:10.1371/journal.ppat.1004627
  • McConville TH, Annavajhala MK, Giddins MJ, et al. CrrB positively regulates high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Cell Rep. 2020;33(4):108313. doi:10.1016/j.celrep.2020.108313
  • Cvek B. Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov Today. 2012;17(9–10):409–412. doi:10.1016/j.drudis.2011.12.010