1,753
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Antimicrobial Resistance Rates and Surveillance in Sub-Saharan Africa: Where Are We Now?

, ORCID Icon, , &
Pages 3589-3609 | Published online: 07 Jul 2022

References

  • Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6(1):1–8. doi:10.1186/s13756-017-0208-x
  • Morel CM, Alm RA, Årdal C, et al. A one health framework to estimate the cost of antimicrobial resistance. Antimicrob Resist Infect Control. 2020;9(1):1–14. doi:10.1186/s13756-020-00822-6
  • Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–3910. doi:10.2147/IDR.S234610
  • Varma JK, Oppong-Otoo J, Ondoa P, et al. Africa Centres for Disease Control and Prevention’s framework for antimicrobial resistance control in Africa. Afr J Lab Med. 2018;7(2):830. doi:10.4102/ajlm.v7i2.830
  • Mendelson M, Matsoso MP. The World Health Organization Global Action Plan for antimicrobial resistance. S Afr Med J. 2015;105(5):325. doi:10.7196/SAMJ.9644
  • Hayat K, Rosenthal M, Gillani AH, et al. Perspective of Pakistani physicians towards hospital antimicrobial stewardship programs: a multisite exploratory qualitative study. Int J Environ Res Public Health. 2019;16(9):1565. doi:10.3390/ijerph16091565
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi:10.1016/j.cmi.2015.12.002
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–655. doi:10.1016/S0140-6736(21)02724-0
  • Macintyre A, Wilson-Jones M, Velleman Y. Prevention first: tackling AMR through water, sanitation and hygiene. 2017.
  • Musoke D, Namata C, Lubega GB, et al. The role of environmental health in preventing antimicrobial resistance in low- and middle-income countries. Environ Health Prev Med. 2021;26(1):100. doi:10.1186/s12199-021-01023-2
  • Li G, Bielicki JA, Ahmed ANU, et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network. Arch Dis Child. 2020;105(1):26–31. doi:10.1136/archdischild-2019-316816
  • Fadare JO, Ogunleye O, Iliyasu G, et al. Status of antimicrobial stewardship programmes in Nigerian tertiary healthcare facilities: findings and implications. J Glob Antimicrob Resist. 2019;17:132–136. doi:10.1016/j.jgar.2018.11.025
  • Parry CM, Wijedoru L, Arjyal A, et al. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti Infect Ther. 2011;9(6):711–725. doi:10.1586/eri.11.47
  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
  • Ferri M, Ranucci E, Romagnoli P, et al. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2017;57(13):2857–2876. doi:10.1080/10408398.2015.1077192
  • Taylor J, Hafner M, Yerushalmi E, et al. Estimating the Economic Costs of Antimicrobial Resistance. Cambridge, UK: Model and Results (RAND Corporation); 2014.
  • McEwen SA, Collignon PJ, Aarestrup FM, Schwarz S, Shen J, Cavaco L. Antimicrobial resistance: a one health perspective. Microbiol Spectr. 2018;6(2). doi:10.1128/microbiolspec.ARBA-0009-2017
  • Sartelli M, Catena F, Catena F, et al. Antibiotic use in low and middle-income countries and the challenges of antimicrobial resistance in surgery. Antibiotics. 2020;9(8):497. doi:10.3390/antibiotics9080497
  • Van TTH, Yidana Z, Smooker PM, et al. Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. J Glob Antimicrob Resist. 2020;20:170–177. doi:10.1016/j.jgar.2019.07.031
  • Chokshi A, Sifri Z, Cennimo D, et al. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11(1):36. doi:10.4103/jgid.jgid_110_18
  • Spellberg B. The maturing antibiotic mantra:“shorter is still better”. J Hosp Med. 2018;13(5):361.2.
  • Ateshim Y, Bereket B, Major F, et al. Prevalence of self-medication with antibiotics and associated factors in the community of Asmara, Eritrea: a descriptive cross sectional survey. BMC Public Health. 2019;19(1):1–7. doi:10.1186/s12889-019-7020-x
  • Yeika EV, Ingelbeen B, Kemah BL, et al. Comparative assessment of the prevalence, practices and factors associated with self‐medication with antibiotics in Africa. Trop Med Int Health. 2021;26(8):862–881. doi:10.1111/tmi.13600
  • Rather IA, Kim B-C, Bajpai VK, et al. Self-medication and antibiotic resistance: crisis, current challenges, and prevention. Saudi J Biol Sci. 2017;24(4):808–812. doi:10.1016/j.sjbs.2017.01.004
  • Simon B, Kazaura M. Prevalence and factors associated with parents self-medicating under-fives with antibiotics in Bagamoyo District Council, Tanzania: a cross-sectional study. Patient Prefer Adherence. 2020;14:1445–1453. doi:10.2147/PPA.S263517
  • Browne AJ, Chipeta MG, Haines-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planetary Health. 2021;5(12):e893–e904. doi:10.1016/S2542-5196(21)00280-1
  • WHO. WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation. WHO; 2018.
  • Van Boeckel TP, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science. 2019;365(6459):eaaw1944. doi:10.1126/science.aaw1944
  • Manyi-Loh C, Mamphweli S, Meyer E, et al. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23(4):795. doi:10.3390/molecules23040795
  • de Mesquita Souza Saraiva M, Lim K, Do Monte DFM, et al. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz J Microbiol. 2022;53(1):465–486. doi:10.1007/s42770-021-00635-8
  • Mshana SE, Sindato C, Matee MI, et al. Antimicrobial use and resistance in agriculture and food production systems in Africa: a systematic review. Antibiotics. 2021;10(8):976. doi:10.3390/antibiotics10080976
  • Collignon P, Beggs JJ, Walsh TR, et al. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planetary Health. 2018;2(9):e398–e405. doi:10.1016/S2542-5196(18)30186-4
  • World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2020. Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2020.
  • World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021. Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2021.
  • Frost I, Van Boeckel TP, Pires J, et al. Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med. 2019;26(8):taz036. doi:10.1093/jtm/taz036
  • Troeger C, Blacker BF, Khalil IA, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1211–1228. doi:10.1016/S1473-3099(18)30362-1
  • Saka HK, Dabo NT, Muhammad B, et al. Diarrheagenic Escherichia coli pathotypes from children younger than 5 years in Kano State, Nigeria. Front Public Health. 2019;7:348. doi:10.3389/fpubh.2019.00348
  • Mabika R, Liabagui S, Kenguele H, et al. Molecular prevalence and epidemiological characteristics of diarrheagenic E. coli in children under 5 years old in the City of Koula-Moutou, East-Central Gabon. Open J Med Microbiol. 2021;11:157–175. doi:10.4236/ojmm.2021.113013
  • Somda NS, Bonkoungou I, Cheikna Z, et al. Prevalence of Escherichia coli virulence genes in patients with diarrhoea in Ouagadougou, Burkina Faso. African J Clin Exp Microbiol. 2017;18:179. doi:10.4314/ajcem.v18i4.1
  • Webale MK, Wanjala C, Guyah B, et al. Epidemiological patterns and antimicrobial resistance of bacterial diarrhea among children in Nairobi City, Kenya. Gastroenterol Hepatol Bed Bench. 2020;13(3):238–246.
  • Msolo L, Iweriebor BC, Okoh AI. Antimicrobial resistance profiles of diarrheagenic E. coli (DEC) and Salmonella species recovered from diarrheal patients in selected rural communities of the Amathole District Municipality, Eastern Cape Province, South Africa. Infect Drug Resist. 2020;13:4615–4626. doi:10.2147/IDR.S269219
  • Seidman JC, Johnson LB, Levens J, et al. Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic Escherichia coli from young Tanzanian children. Front Microbiol. 2016;7:1420. doi:10.3389/fmicb.2016.01420
  • Mahazu S, Prah I, Ayibieke A, et al. Possible dissemination of Escherichia coli sequence type 410 closely related to B4/H24RxC in Ghana. Front Microbiol. 2021;12:770130. doi:10.3389/fmicb.2021.770130
  • Omolajaiye SA, Afolabi KO, Iweriebor BC, Quinn FD. Pathotyping and antibiotic resistance profiling of Escherichia coli isolates from children with acute diarrhea in Amatole District Municipality of Eastern Cape, South Africa. Biomed Res Int. 2020;2020:4250165. doi:10.1155/2020/4250165
  • Ayibieke A, Sato W, Mahazu S, et al. Molecular characterisation of the NDM-1-encoding plasmid p2189-NDM in an Escherichia coli ST410 clinical isolate from Ghana. PLoS One. 2018;13(12):e0209623. doi:10.1371/journal.pone.0209623
  • Ouédraogo AS, Compain F, Sanou M, et al. First description of IncX3 plasmids carrying blaOXA-181 in Escherichia coli clinical isolates in Burkina Faso. Antimicrob Agents Chemother. 2016;60(5):3240–3242. doi:10.1128/AAC.00147-16
  • Prah I, Ayibieke A, Mahazu S, et al. Emergence of oxacillinase-181 carbapenemase-producing diarrheagenic Escherichia coli in Ghana. Emerg Microbes Infect. 2021;10(1):865–873. doi:10.1080/22221751.2021.1920342
  • Igwe JC, Onaolapo JA, Kachallah M, et al.. Molecular characterization of extended spectrum β-lactamase genes in clinical E. coli isolates. J Biomed Eng. 2014;2014. Doi:10.4236/jbise.2014.75030
  • Isendahl J, Turlej-Rogacka A, Manjuba C, et al. Fecal carriage of ESBL-producing E. coli and K. pneumoniae in children in Guinea-Bissau: a hospital-based cross-sectional study. PLoS One. 2012;7(12):e51981. doi:10.1371/journal.pone.0051981
  • Negeri AA, Seyoum ET, Ibrahim RA, et al. Antimicrobial resistance profile of Escherichia coli isolates recovered from diarrheic patients at Selam Health Center, Addis Ababa, Ethiopia. Afr J Microbiol Res. 2019;13(26):457–463. doi:10.5897/AJMR2018.9030
  • World Health Organization. WHO Preferred Product Characteristics for Vaccines Against Enterotoxigenic Escherichia Coli. Geneva: World Health Organization; 2021.
  • Lessler J, Moore SM, Luquero FJ, et al. Mapping the burden of cholera in sub-Saharan Africa and implications for control: an analysis of data across geographical scales. Lancet. 2018;391(10133):1908–1915. doi:10.1016/S0140-6736(17)33050-7
  • Li Z, Lu X, Wang D, et al. Genomic comparison of serogroups O159 and O170 with other Vibrio cholerae serogroups. BMC Genom. 2019;20(1):1–13. doi:10.1186/s12864-018-5379-1
  • Smith AM, Njanpop-Lafourcade B-M, Mengel MA, et al. Comparative characterization of Vibrio cholerae O1 from five sub-Saharan African countries using various phenotypic and genotypic techniques. PLoS One. 2015;10(11):e0142989. doi:10.1371/journal.pone.0142989
  • Adewale AK, Pazhani GP, Abiodun IB, et al. Unique clones of Vibrio cholerae O1 El Tor with Haitian type ctxB allele implicated in the recent cholera epidemics from Nigeria, Africa. PLoS One. 2016;11(8):e0159794. doi:10.1371/journal.pone.0159794
  • Thompson CC, Freitas FS, Marin MA, et al. Vibrio cholerae O1 lineages driving cholera outbreaks during seventh cholera pandemic in Ghana. Infect Genet Evol. 2011;11(8):1951–1956. doi:10.1016/j.meegid.2011.08.020
  • Danso EK, Asare P, Otchere ID, et al. A molecular and epidemiological study of Vibrio cholerae isolates from cholera outbreaks in southern Ghana. PLoS One. 2020;15(7):e0236016. doi:10.1371/journal.pone.0236016
  • Feglo PK, Sewurah M. Characterization of highly virulent multidrug resistant Vibrio cholerae isolated from a large cholera outbreak in Ghana. BMC Res Notes. 2018;11(1):1–6. doi:10.1186/s13104-017-2923-z
  • Sambe-Ba B, Diallo MH, Seck A, et al.. Identification of atypical El TorV. cholerae O1 ogawa hosting SXT element in Senegal, Africa. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.00748
  • Marin MA, Thompson CC, Freitas FS, et al. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl Trop Dis. 2013;7(2):e2049. doi:10.1371/journal.pntd.0002049
  • Iramiot JS, Rwego IB, Kansiime C, et al. Epidemiology and antibiotic susceptibility of Vibrio cholerae associated with the 2017 outbreak in Kasese district, Uganda. BMC Public Health. 2019;19(1):1–9. doi:10.1186/s12889-019-7798-6
  • Garbati M, Baba A, Mursal A, et al. Circulating serotypes and antimicrobial susceptibility pattern of Vibrio cholerae isolates from insurgency-stricken Maiduguri, northeastern Nigeria. Sub Saharan Afr J Med. 2019;6(1):21–26. doi:10.4103/ssajm.ssajm_12_19
  • Awuor SO, Omwenga EO, Daud II. Geographical distribution and antibiotics susceptibility patterns of toxigenic Vibrio cholerae isolates from Kisumu County, Kenya. Afr J Prim Health Care Fam Med. 2020;12(1):e1–e6. doi:10.4102/phcfm.v12i1.2264
  • Dengo-Baloi LC, Semá-Baltazar CA, Manhique LV, et al. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One. 2017;12(8):e0181496. doi:10.1371/journal.pone.0181496
  • Stanaway JD, Reiner RC, Blacker BF, et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19(4):369–381. doi:10.1016/S1473-3099(18)30685-6
  • Baltazar M, Ngandjio A, Holt KE, et al. Multidrug-resistant Salmonella enterica serotype typhi, Gulf of Guinea region, Africa. Emerg Infect Dis. 2015;21(4):655. doi:10.3201/eid2104.141355
  • Feasey NA, Gaskell K, Wong V, et al. Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS Negl Trop Dis. 2015;9(4):e0003748. doi:10.1371/journal.pntd.0003748
  • Park SE, Pham DT, Boinett C, et al. The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nat Commun. 2018;9(1):5094. doi:10.1038/s41467-018-07370-z
  • Mutai WC, Waiyaki PG, Kariuki S, et al. Plasmid profiling and incompatibility grouping of multidrug resistant Salmonella enterica serovar Typhi isolates in Nairobi, Kenya. BMC Res Notes. 2019;12(1):1–6. doi:10.1186/s13104-019-4468-9
  • Keddy KH, Smith AM, Sooka A, et al. Fluoroquinolone-resistant typhoid, South Africa. Emerg Infect Dis. 2010;16(5):879. doi:10.3201/eid1605.091917
  • Lunguya O, Lejon V, Phoba M-F, et al. Salmonella typhi in the Democratic Republic of the Congo: fluoroquinolone decreased susceptibility on the rise. PLoS Negl Trop Dis. 2012;6(11):e1921. doi:10.1371/journal.pntd.0001921
  • Popoola O, Kehinde A, Ogunleye V, et al. Bacteremia among febrile patients attending selected healthcare facilities in Ibadan, Nigeria. Clin Infect Dis. 2019;69(Suppl 6):S466–s73. doi:10.1093/cid/ciz516
  • Kariuki S, Dyson ZA, Mbae C, et al. Multiple introductions of multidrug-resistant typhoid associated with acute infection and asymptomatic carriage, Kenya. Elife. 2021;10:e67852. doi:10.7554/eLife.67852
  • Wong VK, Baker S, Connor TR, et al. An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid. Nat Commun. 2016;7:12827. doi:10.1038/ncomms12827
  • Wong VK, Baker S, Pickard DJ, et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet. 2015;47(6):632–639. doi:10.1038/ng.3281
  • Kariuki S, Revathi G, Kiiru J, et al. Typhoid in Kenya is associated with a dominant multidrug-resistant Salmonella enterica serovar Typhi haplotype that is also widespread in Southeast Asia. J Clin Microbiol. 2010;48(6):2171–2176. doi:10.1128/JCM.01983-09
  • Hendriksen RS, Leekitcharoenphon P, Lukjancenko O, et al. Genomic signature of multidrug-resistant Salmonella enterica serovar Typhi isolates related to a massive outbreak in Zambia between 2010 and 2012. J Clin Microbiol. 2015;53(1):262–272. doi:10.1128/JCM.02026-14
  • Mashe T, Leekitcharoenphon P, Mtapuri-Zinyowera S, et al. Salmonella enterica serovar Typhi H58 clone has been endemic in Zimbabwe from 2012 to 2019. J Antimicrob Chemother. 2021;76(5):1160–1167. doi:10.1093/jac/dkaa519
  • Crump JA, Heyderman RS. A perspective on invasive Salmonella disease in Africa. Clin Infect Dis. 2015;61(suppl_4):S235–S240. doi:10.1093/cid/civ709
  • Jeon HJ, Im J, Haselbeck A, et al. How can the typhoid fever surveillance in Africa and the severe typhoid fever in Africa programs contribute to the introduction of typhoid conjugate vaccines?. Clin Infect Dis. 2019;69(Supplement_6):S417–S421. doi:10.1093/cid/ciz629
  • Walters MS, Routh J, Mikoleit M, et al. Shifts in geographic distribution and antimicrobial resistance during a prolonged typhoid fever outbreak—Bundibugyo and Kasese Districts, Uganda, 2009–2011. PLoS Negl Trop Dis. 2014;8(3):e2726. doi:10.1371/journal.pntd.0002726
  • Amsalu T, Genet C, Adem Siraj Y. Salmonella Typhi and Salmonella Paratyphi prevalence, antimicrobial susceptibility profile and factors associated with enteric fever infection in Bahir Dar, Ethiopia. Sci Rep. 2021;11(1):7359. doi:10.1038/s41598-021-86743-9
  • Awol RN, Reda DY, Gidebo DD. Prevalence of Salmonella enterica serovar Typhi infection, its associated factors and antimicrobial susceptibility patterns among febrile patients at Adare general hospital, Hawassa, southern Ethiopia. BMC Infect Dis. 2021;21(1):1–9. doi:10.1186/s12879-020-05726-9
  • Tack B, Phoba M-F, Van Puyvelde S, et al. Salmonella Typhi from blood cultures in the Democratic Republic of the Congo: a 10-year surveillance. Clin Infect Dis. 2019;68(Supplement_2):S130–S7. doi:10.1093/cid/ciy1116
  • Akinyemi KO, Oyefolu AOB, Mutiu WB, et al. Typhoid fever: tracking the trend in Nigeria. Am J Trop Med Hyg. 2018;99(3_Suppl):41–47. doi:10.4269/ajtmh.18-0045
  • Mashe T, Gudza-Mugabe M, Tarupiwa A, et al. Laboratory characterisation of Salmonella enterica serotype Typhi isolates from Zimbabwe, 2009–2017. BMC Infect Dis. 2019;19(1):1–9. doi:10.1186/s12879-019-4114-0
  • Stanaway JD, Parisi A, Sarkar K, et al. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19(12):1312–1324. doi:10.1016/S1473-3099(19)30418-9
  • Park SE, Pak GD, Aaby P, et al. The relationship between invasive nontyphoidal Salmonella disease, other bacterial bloodstream infections, and malaria in sub-Saharan Africa. Clin Infect Dis. 2016;62(suppl_1):S23–S31. doi:10.1093/cid/civ893
  • Verani JR, Toroitich S, Auko J, et al. Burden of invasive nontyphoidal Salmonella disease in a rural and urban site in Kenya, 2009–2014. Clin Infect Dis. 2015;61(suppl_4):S302–S9. doi:10.1093/cid/civ728
  • Biggs HM, Lester R, Nadjm B, et al. Invasive Salmonella infections in areas of high and low malaria transmission intensity in Tanzania. Clin Infect Dis. 2014;58(5):638–647. doi:10.1093/cid/cit798
  • Nyirenda TS, Nyirenda JT, Tembo DL, et al. Loss of humoral and cellular immunity to invasive nontyphoidal salmonella during current or convalescent Plasmodium falciparum infection in Malawian Children. Clin Vaccine Immunol. 2017;24(7):e00057–17. doi:10.1128/CVI.00057-17
  • Kariuki S, Owusu-Dabo E. Research on invasive nontyphoidal Salmonella disease and developments towards better understanding of epidemiology, management, and control strategies. Clin Infect Dis. 2020;71(Supplement_2):S127–S129. doi:10.1093/cid/ciaa315
  • Uche IV, MacLennan CA, Saul A, Baker S. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl Trop Dis. 2017;11(1):e0005118. doi:10.1371/journal.pntd.0005118
  • Marchello CS, Fiorino F, Pettini E, et al. Incidence of non-typhoidal Salmonella invasive disease: a systematic review and meta-analysis. J Infect. 2021;83(5):523–532. doi:10.1016/j.jinf.2021.06.029
  • Gilchrist JJ, MacLennan CA, Donnenberg MS, Bäumler AJ. Invasive nontyphoidal salmonella disease in Africa. EcoSal Plus. 2019;8(2). doi:10.1128/ecosalplus.ESP-0007-2018
  • Kariuki S, Mbae C, Onsare R, et al. Multidrug-resistant nontyphoidal salmonella hotspots as targets for vaccine use in management of infections in endemic settings. Clin Infect Dis. 2019;68(Suppl 1):S10–s5. doi:10.1093/cid/ciy898
  • Gordon MA. Salmonella infections in immunocompromised adults. J Infect. 2008;56(6):413–422. doi:10.1016/j.jinf.2008.03.012
  • Kingsley RA, Msefula CL, Thomson NR, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–2287. doi:10.1101/gr.091017.109
  • Kariuki S, Revathi G, Kariuki N, et al. Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission?. J Med Microbiol. 2006;55(Pt 5):585–591. doi:10.1099/jmm.0.46375-0
  • Vandenberg O, Nyarukweba DZ, Ndeba PM, et al. Microbiologic and clinical features of Salmonella species isolated from bacteremic children in eastern Democratic Republic of Congo. Pediatr Infect Dis J. 2010;29(6):504–510. doi:10.1097/INF.0b013e3181cd615a
  • Tack B, Phoba M-F, Barbé B, et al. Non-typhoidal Salmonella bloodstream infections in Kisantu, DR Congo: emergence of O5-negative Salmonella Typhimurium and extensive drug resistance. PLoS Negl Trop Dis. 2020;14(4):e0008121. doi:10.1371/journal.pntd.0008121
  • Aldrich C, Hartman H, Feasey N, et al. Emergence of phylogenetically diverse and fluoroquinolone resistant Salmonella Enteritidis as a cause of invasive nontyphoidal Salmonella disease in Ghana. PLoS Negl Trop Dis. 2019;13(6):e0007485. doi:10.1371/journal.pntd.0007485
  • Bachou H, Tylleskär T, Kaddu-Mulindwa DH, et al. Bacteraemia among severely malnourished children infected and uninfected with the human immunodeficiency virus-1 in Kampala, Uganda. BMC Infect Dis. 2006;6(1):160. doi:10.1186/1471-2334-6-160
  • Park SE, Pham DT, Pak GD, et al. The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries. BMJ Glob Health. 2021;6(8):e005659. doi:10.1136/bmjgh-2021-005659
  • Kariuki S, Okoro C, Kiiru J, et al. Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the bla CTX-M-15 gene on a novel IncHI2 plasmid. Antimicrob Agents Chemother. 2015;59(6):3133–3139. doi:10.1128/AAC.00078-15
  • Pulford CV, Perez-Sepulveda BM, Canals R, et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol. 2021;6(3):327–338. doi:10.1038/s41564-020-00836-1
  • Falay D, Kuijpers LMF, Phoba M-F, et al. Microbiological, clinical and molecular findings of non-typhoidal Salmonella bloodstream infections associated with malaria, Oriental Province, Democratic Republic of the Congo. BMC Infect Dis. 2016;16(1):1–14. doi:10.1186/s12879-016-1604-1
  • Obaro SK, Hassan-Hanga F, Olateju EK, et al. Salmonella bacteremia among children in central and northwest Nigeria, 2008–2015. Clin Infect Dis. 2015;61(suppl_4):S325–S331. doi:10.1093/cid/civ745
  • Moon HY, Lee DW, Sim GH, et al. A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts. J Biotechnol. 2016;233:190–199. doi:10.1016/j.jbiotec.2016.07.006
  • Kariuki S, Mbae C, Van Puyvelde S, et al. High relatedness of invasive multi-drug resistant non-typhoidal Salmonella genotypes among patients and asymptomatic carriers in endemic informal settlements in Kenya. PLoS Negl Trop Dis. 2020;14(8):e0008440. doi:10.1371/journal.pntd.0008440
  • Andrews JR, Ryan ET. Diagnostics for invasive Salmonella infections: current challenges and future directions. Vaccine. 2015;33:C8–C15. doi:10.1016/j.vaccine.2015.02.030
  • Kanteh A, Sesay AK, Alikhan N-F, et al. Invasive atypical non-typhoidal Salmonella serovars in The Gambia. Microb Genom. 2021;7(11):000677.
  • Tapia MD, Tennant SM, Bornstein K, et al. Invasive nontyphoidal Salmonella infections among children in Mali, 2002–2014: microbiological and epidemiologic features guide vaccine development. Clin Infect Dis. 2015;61(suppl_4):S332–S338. doi:10.1093/cid/civ729
  • Mandomando I, Bassat Q, Sigaúque B, et al. Invasive Salmonella infections among children from rural Mozambique, 2001–2014. Clin Infect Dis. 2015;61(suppl_4):S339–S345. doi:10.1093/cid/civ712
  • Feasey NA, Masesa C, Jassi C, et al. Three epidemics of invasive multidrug-resistant Salmonella bloodstream infection in Blantyre, Malawi, 1998–2014. Clin Infect Dis. 2015;61(suppl_4):S363–S371. doi:10.1093/cid/civ691
  • Tabu C, Breiman RF, Ochieng B, et al. Differing burden and epidemiology of non-Typhi Salmonella bacteremia in rural and urban Kenya, 2006–2009. PLoS One. 2012;7(2):e31237. doi:10.1371/journal.pone.0031237
  • Okomo U, Akpalu ENK, Le Doare K, et al. Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019;19(11):1219–1234. doi:10.1016/S1473-3099(19)30414-1
  • WHO. Report on the Burden of Endemic Health Care-Associated Infection Worldwide. WHO; 2011.
  • Scherbaum M, Kösters K, Mürbeth RE, et al. Incidence, pathogens and resistance patterns of nosocomial infections at a rural hospital in Gabon. BMC Infect Dis. 2014;14(1):1–8. doi:10.1186/1471-2334-14-124
  • Shrivastava S, Shrivastava P, Ramasamy J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J Med Soc. 2018;32(1):76–77. doi:10.4103/jms.jms_25_17
  • Ali S, Birhane M, Bekele S, et al. Healthcare associated infection and its risk factors among patients admitted to a tertiary hospital in Ethiopia: longitudinal study. Antimicrob Resist Infect Control. 2018;7(1):1–9. doi:10.1186/s13756-017-0298-5
  • Sahiledengle B, Seyoum F, Abebe D, et al. Incidence and risk factors for hospital-acquired infection among paediatric patients in a teaching hospital: a prospective study in southeast Ethiopia. BMJ open. 2020;10(12):e037997. doi:10.1136/bmjopen-2020-037997
  • Yallew WW, Kumie A, Yehuala FM, Folgori L. Risk factors for hospital-acquired infections in teaching hospitals of Amhara regional state, Ethiopia: a matched-case control study. PLoS One. 2017;12(7):e0181145. doi:10.1371/journal.pone.0181145
  • Khan HA, Baig FK, Mehboob R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478–482. doi:10.1016/j.apjtb.2017.01.019
  • Henson SP, Boinett CJ, Ellington MJ, et al. Molecular epidemiology of Klebsiella pneumoniae invasive infections over a decade at Kilifi County Hospital in Kenya. Int J Med Microbiol. 2017;307(7):422–429. doi:10.1016/j.ijmm.2017.07.006
  • Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-1
  • Cornick J, Musicha P, Peno C, et al.. Genomic investigation of a suspected Klebsiella pneumoniae outbreak in a neonatal care unit in sub-Saharan Africa. Microb Genom. 2021;7(11):000703.
  • Lowe M, Kock MM, Coetzee J, et al. Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014–2016. Emerg Infect Dis. 2019;25(4):739. doi:10.3201/eid2504.181482
  • Founou RC, Founou LL, Allam M, et al. Whole genome sequencing of extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from hospitalized patients in KwaZulu-Natal, South Africa. Sci Rep. 2019;9(1):1–11. doi:10.1038/s41598-019-42672-2
  • Mbelle NM, Feldman C, Sekyere JO, et al. Pathogenomics and evolutionary epidemiology of multi-drug resistant clinical Klebsiella pneumoniae isolated from Pretoria, South Africa. Sci Rep. 2020;10(1):1–17. doi:10.1038/s41598-020-58012-8
  • Brady MF, Jamal Z, Pervin N. Acinetobacter. In: StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
  • Ayobami O, Willrich N, Harder T, et al. The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg Microbes Infect. 2019;8(1):1747–1759. doi:10.1080/22221751.2019.1698273
  • Villalón P, Ortega M, Sáez-Nieto JA, et al.. Dynamics of a sporadic nosocomial Acinetobacter calcoaceticus – Acinetobacter baumannii complex population. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.00593
  • ECDC. Carbapenem-Resistant Acinetobacter Baumannii in Healthcare Settings– 8 December 2016. Stockholm: ECDC; 2016.
  • Howard A, O’Donoghue M, Feeney A, et al. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence. 2012;3(3):243–250. doi:10.4161/viru.19700
  • Dexter C, Murray GL, Paulsen IT, et al. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti Infect Ther. 2015;13(5):567–573. doi:10.1586/14787210.2015.1025055
  • Montefour K, Frieden J, Hurst S, et al. Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Crit Care Nurse. 2008;28(1):15–25; quiz 6. doi:10.4037/ccn2008.28.1.15
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi:10.1128/CMR.00058-07
  • Kyriakidis I, Vasileiou E, Pana ZD, et al. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373. doi:10.3390/pathogens10030373
  • Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, et al. Acinetobacter baumannii resistance: a real challenge for clinicians. Antibiotics. 2020;9(4):205. doi:10.3390/antibiotics9040205
  • Rizk SS, Elwakil WH, Attia AS. Antibiotic-resistant Acinetobacter baumannii in low-income countries (2000–2020): twenty-one years and still below the radar, is it not there or can they not afford to look for it?. Antibiotics. 2021;10(7):764. doi:10.3390/antibiotics10070764
  • Vaara M. Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol. 2019;10:1689.
  • Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis. 2019;69(Supplement_7):S521–S528. doi:10.1093/cid/ciz824
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-3
  • Ayibieke A, Kobayashi A, Suzuki M, et al.. Prevalence and Characterization of Carbapenem-Hydrolyzing Class D β-Lactamase-Producing Acinetobacter Isolates From Ghana. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.587398
  • Odih EE, Irek EO, Obadare TO, et al.. Rectal colonization and nosocomial transmission of carbapenem-resistant Acinetobacter baumannii in an intensive care unit, Southwest Nigeria. Front Med. 2022;9. doi:10.3389/fmed.2022.846051
  • Musila L, Kyany’a C, Maybank R, et al. Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. PLoS One. 2021;16(2):e0246937. doi:10.1371/journal.pone.0246937
  • Ssekatawa K, Byarugaba DK, Wampande E, et al. A systematic review: the current status of carbapenem resistance in East Africa. BMC Res Notes. 2018;11(1):629. doi:10.1186/s13104-018-3738-2
  • Olu-Taiwo MA, Opintan JA, Codjoe FS, et al. Metallo-beta-lactamase-producing Acinetobacter spp. from clinical isolates at a tertiary care hospital in Ghana. Biomed Res Int. 2020;2020:3852419. doi:10.1155/2020/3852419
  • Ogbolu DO, Alli OAT, Oluremi AS, et al. Contribution of NDM and OXA-type carbapenemases to carbapenem resistance in clinical Acinetobacter baumannii from Nigeria. Infect Dis. 2020;52(9):644–650. doi:10.1080/23744235.2020.1775881
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655.
  • Ma C, McClean S. Mapping global prevalence of Acinetobacter baumannii and recent vaccine development to tackle it. Vaccines. 2021;9(6):570. doi:10.3390/vaccines9060570
  • Lowe M, Ehlers MM, Ismail F, et al.. Acinetobacter baumannii: epidemiological and beta-lactamase data from two tertiary academic hospitals in Tshwane, South Africa. Front Microbiol. 2018;9. doi:10.3389/fmicb.2018.01280
  • Ayenew Z, Tigabu E, Syoum E, et al. Multidrug resistance pattern of Acinetobacter species isolated from clinical specimens referred to the Ethiopian Public Health Institute: 2014 to 2018 trend anaylsis. PLoS One. 2021;16(4):e0250896. doi:10.1371/journal.pone.0250896
  • Aruhomukama D, Najjuka CF, Kajumbula H, et al. blaVIM- and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC Infect Dis. 2019;19(1):853. doi:10.1186/s12879-019-4510-5
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi:10.1016/S1473-3099(18)30605-4
  • Gitau W, Masika M, Musyoki M, et al. Antimicrobial susceptibility pattern of Staphylococcus aureus isolates from clinical specimens at Kenyatta National Hospital. BMC Res Notes. 2018;11(1):226. doi:10.1186/s13104-018-3337-2
  • Ackers-Johnson G, Kibombo D, Kusiima B, et al.. Antibiotic resistance profiles and population structure of disease-associated Staphylococcus aureus infecting patients in Fort Portal Regional Referral Hospital, Western Uganda. Microbiology. 2021;167(5). doi:10.1099/mic.0.001000
  • Egyir B, Guardabassi L, Sørum M, et al. Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from Healthcare Institutions in Ghana. PLoS One. 2014;9(2):e89716. doi:10.1371/journal.pone.0089716
  • Ayepola OO, Olasupo NA, Egwari LO, et al. Molecular characterization and antimicrobial susceptibility of Staphylococcus aureus isolates from clinical infection and asymptomatic carriers in Southwest Nigeria. PLoS One. 2015;10(9):e0137531. doi:10.1371/journal.pone.0137531
  • Perovic O, Iyaloo S, Kularatne R, et al. Prevalence and trends of Staphylococcus aureus bacteraemia in hospitalized patients in South Africa, 2010 to 2012: laboratory-based surveillance mapping of antimicrobial resistance and molecular epidemiology. PLoS One. 2016;10(12):e0145429. doi:10.1371/journal.pone.0145429
  • Verdú-Expósito C, Romanyk J, Cuadros-González J, et al. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One. 2020;15(3):e0230031. doi:10.1371/journal.pone.0230031
  • Vubil D, Garrine M, Ruffing U, et al.. Molecular characterization of community acquired Staphylococcus aureus bacteremia in young children in Southern Mozambique, 2001–2009. Front Microbiol. 2017;8. doi:10.3389/fmicb.2017.00730
  • Wangai FK, Masika MM, Maritim MC, et al. Methicillin-resistant Staphylococcus aureus (MRSA) in East Africa: red alert or red herring?. BMC Infect Dis. 2019;19(1):596. doi:10.1186/s12879-019-4245-3
  • Shuping LL, Kuonza L, Musekiwa A, et al. Hospital-associated methicillin-resistant Staphylococcus aureus: a cross-sectional analysis of risk factors in South African tertiary public hospitals. PLoS One. 2017;12(11):e0188216. doi:10.1371/journal.pone.0188216
  • Steinhaus N, Al-Talib M, Ive P, et al. The management and outcomes of Staphylococcus aureus bacteraemia at a South African referral hospital: a prospective observational study. Int J Infect Dis. 2018;73:78–84. doi:10.1016/j.ijid.2018.06.004
  • Kateete DP, Namazzi S, Okee M, et al. High prevalence of methicillin resistant Staphylococcus aureus in the surgical units of Mulago hospital in Kampala, Uganda. BMC Res Notes. 2011;4:326. doi:10.1186/1756-0500-4-326
  • Amoako DG, Bester LA, Somboro AM, et al. Plasmid-mediated resistance and virulence mechanisms in the private health sector in KwaZulu-Natal, South Africa: an investigation of methicillin resistant Staphylococcus aureus (MRSA) clinical isolates collected during a three month period. Int J Infect Dis. 2016;46:38–41. doi:10.1016/j.ijid.2016.03.019
  • Donkor ES, Jamrozy D, Mills RO, et al. A genomic infection control study for Staphylococcus aureus in two Ghanaian hospitals. Infect Drug Resist. 2018;11:1757. doi:10.2147/IDR.S167639
  • Nyasinga J, Omuse G, Njenga J, et al. Epidemiology of Staphylococcus aureus infections in Kenya: current state, gaps and opportunities. Open J Med Microbiol. 2020;10:204. doi:10.4236/ojmm.2020.104018
  • Schaumburg F, Alabi AS, Peters G, et al. New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect. 2014;20(7):589–596. doi:10.1111/1469-0691.12690
  • Kumwenda P, Adukwu EC, Tabe ES, et al. Prevalence, distribution and antimicrobial susceptibility pattern of bacterial isolates from a tertiary Hospital in Malawi. BMC Infect Dis. 2021;21(1):34. doi:10.1186/s12879-020-05725-w
  • Dame JA, Beylis N, Nuttall J, et al. Pseudomonas aeruginosa bloodstream infection at a tertiary referral hospital for children. BMC Infect Dis. 2020;20(1):729. doi:10.1186/s12879-020-05437-1
  • Raman G, Avendano EE, Chan J, et al. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018;7(1):79. doi:10.1186/s13756-018-0370-9
  • Cholley P, Ka R, Guyeux C, et al. Population structure of clinical Pseudomonas aeruginosa from West and Central African countries. PLoS One. 2014;9(9):e107008–e. doi:10.1371/journal.pone.0107008
  • Zubair K, Iregbu K. Resistance pattern and detection of metallo‑beta‑lactamase genes in clinical isolates of Pseudomonas aeruginosa in a central Nigeria tertiary hospital. Niger J Clin Pract. 2018;21(2):176–182. doi:10.4103/njcp.njcp_229_17
  • Kateete DP, Nakanjako R, Namugenyi J, et al. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007–2009). SpringerPlus. 2016;5(1):1308. doi:10.1186/s40064-016-2986-7
  • Kaluba CK, Samutela MT, Kapesa C, et al. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter species at a large tertiary referral hospital in Lusaka, Zambia. Sci African. 2021;13:e00908. doi:10.1016/j.sciaf.2021.e00908
  • Annear D, Black J, Govender S. Multilocus sequence typing of carbapenem resistant Pseudomonas aeruginosa isolates from patients presenting at Port Elizabeth Hospitals, South Africa. Afr J Infect Dis. 2017;11(2):68–74. doi:10.21010/ajid.v11i2.9
  • Ettu A, Oladapo B, Oduyebo O. Prevalence of carbapenemase production in Pseudomonas aeruginosa isolates causing clinical infections in Lagos University Teaching Hospital, Nigeria. African J Clin Exp Microbiol. 2021;22(4):498–503. doi:10.4314/ajcem.v22i4.10
  • Codjoe FS, Brown CA, Smith TJ, et al. Genetic relatedness in carbapenem-resistant isolates from clinical specimens in Ghana using ERIC-PCR technique. PLoS One. 2019;14(9):e0222168. doi:10.1371/journal.pone.0222168
  • Founou RC, Founou LL, Allam M, et al. First report of a clinical multidrug-resistant Pseudomonas aeruginosa ST532 isolate harbouring a ciprofloxacin-modifying enzyme (CrpP) in South Africa. J Glob Antimicrob Resist. 2020;22:145–146. doi:10.1016/j.jgar.2020.05.012
  • Yoon E-J, Jeong SH. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.614058
  • Kateete DP, Nakanjako R, Okee M, et al. Genotypic diversity among multidrug resistant Pseudomonas aeruginosa and Acinetobacter species at Mulago Hospital in Kampala, Uganda. BMC Res Notes. 2017;10(1):284. doi:10.1186/s13104-017-2612-y
  • Kiyaga S, Kyany’a C, Muraya AW, et al.. Genetic diversity, distribution, and genomic characterization of antibiotic resistance and virulence of clinical Pseudomonas aeruginosa Strains in Kenya. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.835403
  • Olaniran OB, Adeleke OE, Donia A, et al. Incidence and molecular characterization of carbapenemase genes in association with multidrug-resistant clinical isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol. 2022;79(1):1–14. doi:10.1007/s00284-021-02706-3
  • Philipsborn R, Ahmed SM, Brosi BJ, et al. Climatic drivers of diarrheagenic Escherichia coli incidence: a systematic review and meta-analysis. J Infect Dis. 2016;214(1):6–15. doi:10.1093/infdis/jiw081
  • Aslam B, Khurshid M, Arshad MI, et al.. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11. doi:10.3389/fcimb.2021.771510
  • Huijbers PMC, Blaak H, de Jong MCM, et al. Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ Sci Technol. 2015;49(20):11993–12004. doi:10.1021/acs.est.5b02566
  • Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–269. doi:10.1038/s41579-021-00649-x
  • Sano D, Louise Wester A, Schmitt H, et al. Updated research agenda for water, sanitation and antimicrobial resistance. J Water Health. 2020;18(6):858–866. doi:10.2166/wh.2020.033
  • Munkholm L, Rubin O. The global governance of antimicrobial resistance: a cross-country study of alignment between the global action plan and national action plans. Global Health. 2020;16(1):109. doi:10.1186/s12992-020-00639-3
  • Elton L, Thomason MJ, Tembo J, et al. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob Resist Infect Control. 2020;9(1):1–11. doi:10.1186/s13756-020-00800-y
  • Iwu CD, Patrick SM. An insight into the implementation of the global action plan on antimicrobial resistance in the WHO African region: a roadmap for action. Int J Antimicrob Agents. 2021;58(4):106411. doi:10.1016/j.ijantimicag.2021.106411
  • Gordon N, Aggarwal V, Amos B, et al. The UK Fleming Fund: developing AMR surveillance capacity in low-and middle-income countries. Int J Infect Dis. 2020;101:40. doi:10.1016/j.ijid.2020.09.137
  • WHO. Antimicrobial Resistance: National Action Plans. Webpage. WHO; 2016.
  • Mpundu M. Moving from paper to action-the status of national AMR action plans in African countries. Available from: https://revive.gardp.org/moving-from-paper-to-action-the-status-of-national-amr-action-plans-in-african-countries. Accessed July 2, 2022.
  • Goldberg J, Clezy K, Jasovský D, et al. Leaving no one behind: the need for a truly global response to antimicrobial resistance. Lancet Microbe. 2022;3(1):e2–e3. doi:10.1016/S2666-5247(21)00303-7
  • World Health Organization. UHC in Africa: A Framework for Action. World Health Organization; 2016.
  • World Health Organization. The World Health Report: Health Systems Financing: The Path to Universal Coverage: Executive Summary. World Health Organization; 2010.
  • Oleribe OO, Momoh J, Uzochukwu BS, et al. Identifying key challenges facing healthcare systems in Africa and potential solutions. Int J Gen Med. 2019;12:395. doi:10.2147/IJGM.S223882
  • Pierce J, Apisarnthanarak A, Schellack N, et al. Global antimicrobial stewardship with a focus on low-and middle-income countries: a position statement for the international society for infectious diseases. Int J Infect Dis. 2020;96:621–629. doi:10.1016/j.ijid.2020.05.126
  • WHO. WHO Implementation Handbook for National Action Plans on Antimicrobial Resistance: Guidance for the Human Health Sector. WHO; 2022.