240
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Explorative Analysis of Treatment Outcomes of Levofloxacin- and Moxifloxacin-Based Regimens and Outcome Predictors in Ethiopian MDR-TB Patients: A Prospective Observational Cohort Study

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 5473-5489 | Published online: 18 Dec 2021

References

  • World Health Organization. Global Tuberculosis Report. Geneva, Switzerland: World Health Organization; 2018.
  • World Health Organization. Global Tuberculosis Report. Geneva, Switzerland: World Health Organization; 2016.
  • World Health Organization. Global Tuberculosis Report. Geneva, Switzerland:: World Health Organization; 2019.
  • World Health Organization. Global tuberculosis report 2020, 2020: 1–232.
  • Kang YA, Choi YJ, Cho YJ, et al. Cost of treatment for multidrug-resistant tuberculosis in South Korea. Respirology. 2006;11(6):793–798. doi:10.1111/j.1440-1843.2006.00948.x17052310
  • White VL, Moore-Gillon J. Resource implications of patients with multidrug resistant tuberculosis. Thorax. 2000;55(11):962–963. doi:10.1136/thorax.55.11.96211050268
  • Nathanson E, Gupta R, Huamani P, et al. Adverse events in the treatment of multidrug-resistant tuberculosis: results from the DOTS-plus initiative. Int J Tuberc Lung Dis. 2004;8(11):1382–1384.15581210
  • World Health Organization. Global tuberculosis report. WHO/CDS/TB/2019.15. Geneva: World Health Organization; 2019.
  • Aubry A, Pan XS, Fisher LM, et al. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother. 2004;48:(4):1281–1288. doi:10.1128/AAC.48.4.1281-1288.200415047530
  • Asif M. An overview on fluoroquinolone drugs for the treatment of tubercular infection. Int J Biosen Bioelectron. 2017;2(1):33‒36. doi:10.15406/ijbsbe.2017.02.00012
  • Rodriguez JC, Ruiz M, Lopez M, et al. In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents. 2002;20(6):(464–7). doi:10.1016/S0924-8579(02)00239-X
  • Noel GJ, Natarajan J, Chien S, et al. Effects of three fluoroquinolones on QT interval in healthy adults after single doses. Clin Pharmacol Ther. 2003;73(2):4. doi:10.1016/S0009-9236(03)90373-012545138
  • Täubel J, Prasad K, Rosano G, et al. Effects of the fluoroquinolones moxifloxacin and levofloxacin on the QT subintervals: sex differences in ventricular repolarization. J Clin Pharmacol. 2020;60(3):400–408. doi:10.1002/jcph.153431637733
  • Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure. J Antimicrob Chemother. 2007;59(5):860–865. doi:10.1093/jac/dkm06117412727
  • Caminero JA. Likelihood of generating MDR-TB and XDR-TB under adequate National Tuberculosis Control Programme implementation. Int J Tuberc Lung Dis. 2008;12(8):869–877.18647445
  • Devasia RA, Blackman A, Gebretsadik T, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis: the effect of duration and timing of fluoroquinolone exposure. Am J Respir Crit Care Med. 2009;180(4):365–370. doi:10.1164/rccm.200901-0146OC19483111
  • Migliori GB, Lange C, Centis R, et al. Resistance to second-line injectables and treatment outcomes in multidrug-resistant and extensively drug-resistant tuberculosis cases. Eur Respir J. 2008;31(6):1155–1159. doi:10.1183/09031936.0002870818515555
  • Kim HR, Hwang SS, Kim HJ, et al. Impact of extensive drug resistance on treatment outcomes in non-HIV-infected patients with multidrug-resistant tuberculosis. Clin Infect Dis. 2007;45(10):1290–1295. doi:10.1086/52253717968823
  • Kim DH, Kim HJ, Park SK, et al. Treatment outcomes and survival based on drug resistance patterns in multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182(1):113–119. doi:10.1164/rccm.200911-1656OC20224066
  • Srivastava S, Pasipanodya JG, Meek C, et al. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204(12):1951–1959. doi:10.1093/infdis/jir65822021624
  • Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population PK/PD model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64. doi:10.1016/S0169-2607(98)00067-410195646
  • Mohamed S, Fazlin A. Pharmacokinetic and pharmacodynamic modeling of antibiotics and bacterial drug resistance. Dig Compr Summ Upps Diss Fac Pharm. 2013;170:77.
  • McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients Who are men or have low weight: implications for international dosing guideline. Antimicrob Agents Chemother. 2012;56(6):3232–3238. doi:10.1128/AAC.05526-1122411614
  • Chigutsa E, Patel K, Denti P, et al. A time-to-event pharmacodynamic model describing treatment response in patients with pulmonary tuberculosis using days to positivity in automated liquid mycobacterial culture. Antimicrob Agents Chemother. 2013;57(2):789–795. doi:10.1128/AAC.01876-1223183433
  • Chen J, Chen Z, Li Y, et al. Characterization of gyrA and gyrB mutations and fluoroquinolone resistance in Mycobacterium tuberculosis clinical isolates from Hubei Province, China. Braz J Infect Dis. 2012;16(2):136–141. doi:10.1016/s1413-8670(12)70294-522552454
  • Nies AS. Principles of therapeutics. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s the Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2001:45–66.
  • Laxminarayan R, Heymann D. Challenges of drug resistance in the developing world. BMJ. 2012;344:e1567. doi:10.1136/bmj.e156722491075
  • Aung K, Van DA, Declercq E, et al. Successful ‘9-month Bangladesh regimen’for multidrug-resistant tuberculosis among over 500 consecutive patients. The Int J Tuberc Lung Dis. 2014;18(10):1180–1187. doi:10.5588/ijtld.14.010025216831
  • Curry International Tuberculosis Center and California Department of Public Health. Drug-Resistant Tuberculosis: A Survival Guide for Clinicians. 3rd ed. Available from: http://www.currytbcenter.ucsf.edu/sites/default/files/tb_sg3_book.pdf. Accessed November 6, 2018.
  • World Health Organization. Rapid communication: key changes to treatment of multi-drug and rifampicin- resistant tuberculosis (MDR/RRTB); 2018. Available from: http://www.who.int/tb/publications/2018/WHO_RapidCommunicationMDRTB.pdf?ua=1. Accessed September, 2018.
  • Piubello A, Harouna SH, Souleymane M, et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. The Int J Tuberc Lung Dis. 2014;18(10):1188–1194. doi:10.5588/ijtld.13.007525216832
  • Kuaban C, Noeske J, Rieder H, Ait-Khaled N, Abena Foe J, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis. 2015;19(5):517–524. doi:10.5588/ijtld.14.053525868018
  • Moodley R, Godec TR. Short-course treatment for multidrug resistant tuberculosis: the STREAM trials. Eur Respir Rev. 2016;25(139):29–35. doi:10.1183/16000617.0080-201526929418
  • Kang YA, Shim TS, Koh WJ, et al. Choice between levofloxacin and moxifloxacin and multidrug-resistant tuberculosis treatment outcomes. Ann Am Thorac Soc. 2016;13:3. doi:10.1513/AnnalsATS.201510-690BC
  • Koh WJ, Lee SH, Kang YA, et al. Comparison of levofloxacin vs. moxifloxacin for multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2013;188(7):858–864. doi:10.1164/rccm.201303-0604OC23927582
  • World Health Organization. WHO global lists of high burden countries for TB, multidrug/rifampicin-resistant TB (MDR/RR-TB) and TB/HIV, 2021–2025; 2021.
  • Girum T, Muktar E, Lentiro K, et al. Epidemiology of multidrug resistant tuberculosis (MDR-TB) in Ethiopia: a systematic review and meta-analysis of the prevalence, determinants and treatment outcome. Trop Dis Travel Med Vaccines. 2018;4(1):5. doi:10.1186/s40794-018-0065-529942536
  • Woldeyohannes D, Assefa T, Aman R, et al. Predictors of time to unfavorable treatment outcomes among patients with multidrug resistant tuberculosis in Oromia region, Ethiopia. PLoS One. 2019;14(10):e0224025. doi:10.1371/journal.pone.022402531665154
  • Alene KA, Viney K, McBryde ES, et al. Treatment outcomes in patients with multidrug-resistant tuberculosis in north-west Ethiopia. Trop Med Int Health. 2017;22(3):351–362. doi:10.1111/tmi.1282627978594
  • Meressa D, Hurtado RM, Andrews JR, et al. Achieving high treatment success for multidrug-resistant TB in Africa: initiation and scale-up of MDR TB care in Ethiopia—an observational cohort study. Thorax. 2015;70(12):1181–1188. doi:10.1136/thoraxjnl-2015-20737426506854
  • World Health Organization. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. Geneva, Switzerland: World Health Organization; 2014.
  • National Institute of Allergy and Infectious Diseases National Institutes of Health, US Department of Health and Human Services. Division of AIDS (DAIDS) table for grading the severity of adult and pediatric adverse events. Corrected Version 2.1; July, 2017.
  • GLI. Line probe assays for drug resistant tuberculosis detection Interpretation and reporting guide for laboratory staff and clinicians (revised June 2018). Global Laboratory Initiative; 2017. Available from: http://www.stoptb.org/wg/gli/assets/documents/LPA_test_web_ready.pdf. Accessed December 12, 2021.
  • Kurbatova EV, Cegielski JP, Lienhardt C, et al. Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort studies. Lancet Respir Med. 2015;3(3):201–209. doi:10.1016/S2213-2600(15)00036-325726085
  • Peloquin CA, Hadad DJ, Molino LP, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52:852–857. doi:10.1128/AAC.01036-0718070980
  • Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics. 2016;14(5):298–313. doi:10.1016/j.gpb.2016.03.00827729266
  • Roden DM, George JAL. The genetic basis of variability in drug responses. Nat Rev Drug Discov. 2002;1(1):37–44. doi:10.1038/nrd70512119608
  • Pirmohamed M. Genetic factors in the predisposition to drug-induced hypersensitivity reactions. AAPS J. 2006;8(1):E20–6. doi:10.1208/aapsj08010316584129
  • Shah RR. Inter-ethnic differences in drug response: implications for drug development and complying with drug regulation. Clin Res Regul Aff. 2015;32(3):88–98. doi:10.3109/10601333.2015.1064131
  • Naidoo A, Ramsuran V, Chirehwa M, et al. Effect of genetic variation in UGT1A and ABCB1 on moxifloxacin pharmacokinetics in South African patients with tuberculosis. Pharmacogenomics. 2018;19(1):17–29. doi:10.2217/pgs-2017-014429210323
  • Tola H, Holakouie-Naieni K, Mansournia MA, et al. National treatment outcome and predictors of death and treatment failure in multidrug-resistant tuberculosis in Ethiopia: a 10-year retrospective cohort study. BMJ Open. 2021;11(8):e040862. doi:10.1136/bmjopen-2020-040862
  • Yu MC, Chiang C-Y, Lee JJ, et al. Treatment outcomes of multidrug-resistant tuberculosis in Taiwan: tackling loss to follow-up. Clin Infect Dis. 2018;67(2):869–877. doi:10.1093/cid/ciy06629718124
  • Javaid A, Ullah I, Masud H, et al. Predictors of poor treatment outcomes in multidrug-resistant tuberculosis patients: a retrospective cohort study. Clin Microbiol Infect. 2018;24(6):1155–1159. doi:10.1016/j.cmi.2017.09.012
  • Kang Y, Jo E-J, Eom JS, et al. Treatment outcomes of patients with multidrug-resistant tuberculosis: comparison of pre- and post-public–private mix periods. Tuberc Respir Dis. 2021;84(1):74–83. doi:10.4046/trd.2020.0093
  • Leveri TH, Lekule I, Mollel E, et al. Predictors of treatment outcomes among multidrug resistant tuberculosis patients in Tanzania. Tuberc Res Treat. 2019;2019:1–10.
  • World Health Organization. Global tuberculosis report 2017. WHO; 2017:1–147.
  • Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392(10150):821–834. doi:10.1016/S0140-6736(18)31644-130215381
  • Soeroto AY, Pratiwi C, Santoso P, Lestari BW. Factors affecting outcome of longer regimen multidrug-resistant tuberculosis treatment in West Java Indonesia: a retrospective cohort study. PLoS One. 2021;16(2):e0246284. doi:10.1371/journal.pone.024628433556094
  • Id AS, Gelaw B, Gebreyes W, Robinson R, Wang S, Tessema B. The burden of pre-extensively and extensively drug-resistant tuberculosis among MDR-TB patients in the Amhara region, Ethiopia. PLoS One. 2020;15(2):1–13. doi:10.1371/journal.pone.0229040.
  • Welekidan LN, Skjerve E, Dejene TA, et al. Characteristics of pulmonary multidrug-resistant tuberculosis patients in Tigray Region, Ethiopia: a cross-sectional study. PLoS One. 2020;15(8):e0236362. doi:10.1371/journal.pone.023636232797053
  • Kurbatova EV, Cegielski JP, Lienhardt C, et al. Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort studies. Lancet Respir Med. 2015;3(3):201–209.25726085
  • Duraisamy K, Mrithyunjayan S, Ghosh S, et al. Does alcohol consumption during multidrug-resistant tuberculosis treatment affect outcome? A population-based study in Kerala, India. Ann Am Thorac Soc. 2014;11:5.
  • Charoensakulchai S, Limsakul M, Saengungsumalee I, et al. Characteristics of poor tuberculosis treatment outcomes among patients with pulmonary tuberculosis in community hospitals of Thailand. Am J Trop Med Hyg. 2020;102(3):553–561. doi:10.4269/ajtmh.19-056431933460
  • Yoder MA, Lamichhane G, Bishai WR. Cavitary pulmonary tuberculosis: the Holy Grail of disease transmission. Curr Sci. 2004;86::74–81.
  • Murthy SE, Chatterjee F, Crook A, et al. Pretreatment chest x-ray severity and its relation to bacterial burden in smear positive pulmonary tuberculosis. BMC Med. 2018;16:73.29779492
  • Lee H, Sohn JW, Sim YS, Shin TR, Kim D-G, Choi H. Outcomes of extended duration therapy for drug-susceptible. Ann Transl Med. 2020;8(6):346. doi:10.21037/atm.2020.02.10432355790
  • Saeed W. Cavitating pulmonary tuberculosis: a global challenge. Clin Med. 2012;12(1):40–41. doi:10.7861/clinmedicine.12-1-40
  • Saeed W. Malignant tuberculosis. J Ayub Med Coll. 2006;18:1–2.
  • Imamura Y, Murayama N, Okudaira N, Kurihara A. Prediction of fluoroquinolone-induced elevation in serum creatinine levels: a case of drug–Endogenous substance interaction involving the inhibition of renal secretion. Clin Pharmacol Ther. 2011;89(1):81–88. doi:10.1038/clpt.2010.23221124314
  • Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17(1):R35. doi:10.1186/cc1254423448570
  • Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care. 2013;28(5):695–700. doi:10.1016/j.jcrc.2013.03.00323683557
  • Camargo MS, Mistro S, Oliveira MG, Passos LCS. Association between increased mortality rate and antibiotic dose adjustment in intensive care unit patients with renal impairment. Eur J Clin Pharmacol. 2019;75(1):119–126. doi:10.1007/s00228-018-2565-730276417
  • Okazaki O, Kojima C, Hakusui H, Nakashima M. Enantioselective disposition of ofloxacin in humans. Antimicrob Agents Chemother. 1991;35(10):2106–2109. doi:10.1128/AAC.35.10.21061759834
  • Hung CC, Kuo MC, Chang JM, Chen HC. Fluoroquinolone-induced acute interstitial nephritis in immunocompromised patients: two case reports. Nephrol Dial Transplant. 2006;21(1):238. doi:10.1093/ndt/gfi178
  • Wolfson JS, Hooper DC. Overview of fluoroquinolone safety. Am J Med. 1991;91(6):153S–161S. doi:10.1016/0002-9343(91)90330-Z1767803
  • Farid S, Mahmood M, Saleh OMA, et al. Clinical manifestations and outcomes of fluoroquinolone-related acute interstitial nephritis. Mayo Clin Proc. 2018;93(1):25–31. doi:10.1016/j.mayocp.2017.08.02429157532
  • Jeong I, Park JS, Cho YJ, et al. Drug-induced hepatotoxicity of anti-tuberculosis drugs and their serum levels. J Korean Med Sci. 2015;30(2):167–172. doi:10.3346/jkms.2015.30.2.16725653488
  • Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 2003;167(11):1472–1477. doi:10.1164/rccm.200206-626OC12569078
  • Tostmann A, Boeree MJ, Aarnoutse RE, De lange WC, van der Ven AJ, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 2008;23(2):192–202. doi:10.1111/j.1440-1746.2007.05207.x17995946