207
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Diversity of glpK Gene and Its Effect on Drug Sensitivity in Mycobacterium bovis

ORCID Icon, , , , & ORCID Icon
Pages 1467-1475 | Published online: 02 Apr 2022

References

  • World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021.
  • Bald D, Villellas C, Lu P, Koul A. Targeting energy metabolism in Mycobacterium tuberculosis, a new paradigm in antimycobacterial drug discovery. mBio. 2017;8(2). doi:10.1128/mBio.00272-17
  • Harding E. WHO global progress report on tuberculosis elimination. Lancet Resp Med. 2020;8(1):E3. doi:10.1016/S2213-2600(19)30421-7
  • Phillips L. Infectious disease: TB’s revenge. Nature. 2013;493(7430):14–16. doi:10.1038/493014a
  • Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014;12(3):159–167. doi:10.1038/nrmicro3200
  • Keating LA, Wheeler PR, Mansoor H, et al. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol. 2005;56(1):163–174. doi:10.1111/j.1365-2958.2005.04524.x
  • Garnier T, Eiglmeier K, Camus JC, et al. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA. 2003;100(13):7877–7882. doi:10.1073/pnas.1130426100
  • Grange JM. Mycobacterium bovis infection in human beings. Tuberculosis. 2001;81(1–2):71–77. doi:10.1054/tube.2000.0263
  • Stermann M, Sedlacek L, Maass S, Bange FC. A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J Bacteriol. 2004;186(9):2856–2861. doi:10.1128/JB.186.9.2856-2861.2004
  • Michel AL, Muller B, van Helden PD. Mycobacterium bovis at the animal-human interface: a problem, or not? Vet Microbiol. 2010;140(3–4):371–381. doi:10.1016/j.vetmic.2009.08.029
  • Blumberg HM, Burman WJ, Chaisson RE, et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167(4):603–662. doi:10.1164/rccm.167.4.603
  • Lan ZY, Bastos M, Menzies D. Treatment of human disease due to Mycobacterium bovis: a systematic review. Eur Respir J. 2016;48(5):1500–1503. doi:10.1183/13993003.00629-2016
  • Schultsz C, Kuijper EJ, vanSoolingen D, Prins JM. Disseminated infection due to multidrug-resistant Mycobacterium bovis in a patient who was seropositive for human immunodeficiency virus. Clin Infect Dis. 1996;23(4):841–843. doi:10.1093/clinids/23.4.841
  • Palenque E, Villena V, Rebollo J, Jimenez S, Samper S. Transmission of multidrug-resistant Mycobacterium bovis to an immunocompetent patient. Clin Infect Dis. 1998;26(4):995–996. doi:10.1086/517645
  • Bobadilla-del Valle M, Torres-Gonzalez P, Cervera-Hernandez ME, et al. Trends of Mycobacterium bovis isolation and first-line anti-tuberculosis drug susceptibility profile: a fifteen-year laboratory-based surveillance. PLoS Negl Trop Dis. 2015;9(9):e0004124. doi:10.1371/journal.pntd.0004124
  • Vazquez-Chacon CA, Martinez-Guarneros A, Couvin D, et al. Human multidrug-resistant Mycobacterium bovis infection in Mexico. Tuberculosis. 2015;95(6):802–809. doi:10.1016/j.tube.2015.07.010
  • Khattak I, Mushtaq MH, Ayaz S, et al. Incidence and drug resistance of zoonotic Mycobacterium bovis infection in Peshawar, Pakistan. Adv Microbiol Infect Dis Public Health. 2018;1057:111–126. doi:10.1007/5584_2018_170
  • Franco MMJ, Ribeiro MG, Pavan FR, et al. Genotyping and rifampicin and isoniazid resistance in Mycobacterium bovis strains isolated from the lymph nodes of slaughtered cattle. Tuberculosis. 2017;104:30–37. doi:10.1016/j.tube.2017.02.006
  • Valle MBD, Torres-Gonzalez P, Cervera-Hernandez ME, et al. Trends of Mycobacterium bovis isolation and first-line anti-tuberculosis drug susceptibility profile: a fifteen-year laboratory-based surveillance. PLoS Negl Trop Dis. 2015;9(9). doi:10.1371/journal.pntd.0004124
  • Kaneene JB, Kaplan B, Steele JH, Thoen CO. One health approach for preventing and controlling tuberculosis in animals and humans. Zoonotic Tuberculosis. 2014;9–20. doi:10.1002/9781118474310
  • Bellerose MM, Baek SH, Huang CC, et al. Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy. mBio. 2019;10(4). doi:10.1128/mBio.00663-19
  • Safi H, Gopal P, Lingaraju S, et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc Natl Acad Sci USA. 2019;116(39):19665–19674. doi:10.1073/pnas.1907631116
  • Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–175. doi:10.1038/nprot.2007.521
  • Sherman DR, Voskuil M, Schnappinger D, Liao RL, Harrell MI, Schoolnik GK. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin (vol 98, pg 7534, 2001). Proc Natl Acad Sci USA. 2001;98(26):15393.
  • Kubica GP, Wayne LG. The Mycobacteria: A Sourcebook. Marcel Dekker Incorporated; 1984.
  • Chernyaeva EN, Shulgina MV, Rotkevich MS, et al. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology. BMC Genom. 2014;15(1):308. doi:10.1186/1471-2164-15-308
  • Dubos RJ, Middlebrook G. Media for Tubercle Bacilli. Am Rev Tuberc Pulm. 1947;56(4):334–345.
  • Vazquez-Chacon CA, Rodriguez-Gaxiola FD, Lopez-Carrera CF, et al. Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas. PLoS Negl Trop Dis. 2021;15(2):e0009145. doi:10.1371/journal.pntd.0009145
  • Hutter B, Dick T. Up-regulation of narX, encoding a putative ‘fused nitrate reductase’ in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol Lett. 1999;178(1):63–69. doi:10.1111/j.1574-6968.1999.tb13760.x
  • Giffin MM, Raab RW, Morganstern M, Sohaskey CD. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One. 2012;7(9):e45459. doi:10.1371/journal.pone.0045459
  • Park HD, Guinn KM, Harrell MI, et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol. 2003;48(3):833–843. doi:10.1046/j.1365-2958.2003.03474.x
  • Yuan Y, Crane DD, Simpson RM, et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci USA. 1998;95(16):9578–9583. doi:10.1073/pnas.95.16.9578
  • Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE, Boshoff HI. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog. 2011;7(10):e1002287. doi:10.1371/journal.ppat.1002287
  • Evangelista AG, Correa JAF, Pinto AC, Luciano FB. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance - a review. Crit Rev Food Sci Nutr. 2021;1–17. doi:10.1080/10408398.2021.1883548
  • Koch A, Mizrahi V, Warner DF. The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect. 2014;3(1):1–11. doi:10.1038/emi.2014.17
  • Edson NL. The intermediary metabolism of the mycobacteria. Bacteriol Rev. 1951;15(3):147–182. doi:10.1128/Mmbr.15.3.147-182.1951
  • Woodford N, Ellington MJ. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect. 2007;13(1):5–18. doi:10.1111/j.1469-0691.2006.01492.x
  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. doi:10.1038/nrmicro3380
  • Lopatkin AJ, Bening SC, Manson AL, et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science. 2021;371(6531):6531. doi:10.1126/science.aba0862
  • Zampieri M, Zimmermann M, Claassen M, Sauer U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 2017;19(6):1214–1228. doi:10.1016/j.celrep.2017.04.002
  • Zampieri M, Enke T, Chubukov V, Ricci V, Piddock L, Sauer U. Metabolic constraints on the evolution of antibiotic resistance. Mol Syst Biol. 2017;13(3):917. doi:10.15252/msb.20167028
  • Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011;9(5):e1001065. doi:10.1371/journal.pbio.1001065
  • Munoz-Elias EJ, Timm J, Botha T, Chan WT, Gomez JE, McKinney JD. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun. 2005;73(1):546–551. doi:10.1128/IAI.73.1.546-551.2005
  • Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. A replication clock for Mycobacterium tuberculosis. Nat Med. 2009;15(2):211–214. doi:10.1038/nm.1915
  • Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature. 1970;227(5254):138–140. doi:10.1038/227138a0
  • Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis. 2004;84(1–2):29–44. doi:10.1016/j.tube.2003.08.003
  • Smith NH, Gordon SV, de la Rua-domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol. 2006;4(9):670–681. doi:10.1038/nrmicro1472
  • Goossens SN, Sampson SL, Van Rie A. Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev. 2020;34(1). doi:10.1128/CMR.00141-20
  • Tazerart F, Saad J, Niar A, Sahraoui N, Drancourt M. Mycobacterium bovis pulmonary tuberculosis, Algeria. Emerg Infect Dis. 2021;27(3):972–974. doi:10.3201/eid2703.191823
  • Rivero A, Marquez M, Santos J, et al. High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin Infect Dis. 2001;32(1):159–161. doi:10.1086/317547
  • Esteban J, Robles P, Jimenez MS, Guerrero MLF. Pleuropulmonary infections caused by Mycobacterium bovis: a re-emerging disease. Clin Microbiol Infect. 2005;11(10):840–843. doi:10.1111/j.1469-0691.2005.01225.x
  • Long R, Nobert E, Chomyc S, et al. Transcontinental spread of multidrug-resistant Mycobacterium bovis. Am J Respir Crit Care Med. 1999;159(6):2014–2017. doi:10.1164/ajrccm.159.6.9809076