290
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Characterization and Genomic Analysis of a Novel Drexlervirial Bacteriophage IME268 with Lytic Activity Against Klebsiella pneumoniae

, , , , , ORCID Icon, & ORCID Icon show all
Pages 1533-1546 | Published online: 05 Apr 2022

References

  • Nazir A, Zhao Y, Li M, et al. Structural genomics of repA, repB1-carrying IncFIB family pA1705-qnrS, P911021-tetA, and P1642-tetA, multidrug-resistant plasmids from Klebsiella pneumoniae. Infect Drug Resist. 2020;13:1889. doi:10.2147/IDR.S228704
  • Li M, Xiao Y, Li P, et al. Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol. 2020;165(12):2799–2806. doi:10.1007/s00705-020-04822-0
  • Li M, Guo M, Chen L, et al. Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol. 2020;11:1554. doi:10.3389/fmicb.2020.01554
  • Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):1–12. doi:10.1186/s12941-017-0191-3
  • Zhu WM, Yuan Z, Zhou HY. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection relative to two types of control patients: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):1–13.
  • Nazir A, Dong Z, Liu J, et al. Genomic analysis of bacteriophage Xoo-sp13 infecting Xanthomonas oryzae pv. oryzae. Arch Virol. 2021;166(4):1263–1265. doi:10.1007/s00705-021-04985-4
  • Nazir A, Ali A, Qing H, Tong Y. Emerging aspects of jumbo bacteriophages. Infect Drug Resist. 2021;14:5041. doi:10.2147/IDR.S330560
  • Xi H, Dai J, Tong Y, et al. The characteristics and genome analysis of vB_AviM_AVP, the first phage infecting Aerococcus viridans. Viruses. 2019;11(2):104. doi:10.3390/v11020104
  • Hu Y, Tong S, Li P, et al. Characterization and genome sequence of a genetically unique Escherichia Bacteriophage vB_EcoM_IME392. 2021.
  • Fu P, Zhao Q, Shi L, et al. Identification and characterization of two bacteriophages with lytic activity against multidrug-resistant Escherichia coli. Virus Res. 2021;291:198196. doi:10.1016/j.virusres.2020.198196
  • Tian F, Li J, Nazir A, Tong Y. Bacteriophage–a promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021;14:205. doi:10.2147/IDR.S290093
  • Ji Y, Cheng M, Zhai S, et al. Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol. 2019;229:72–80. doi:10.1016/j.vetmic.2018.12.021
  • Soleimani Sasani M, Eftekhar F. Potential of a bacteriophage isolated from wastewater in treatment of lobar pneumonia infection induced by Klebsiella pneumoniae in mice. Curr Microbiol. 2020;77:2650–2655. doi:10.1007/s00284-020-02041-z
  • Henry M, Lavigne R, Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother. 2013;57(12):5961–5968. doi:10.1128/AAC.01596-13
  • Zhang Q, Xing S, Sun Q, et al. Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang, China. Virus Genes. 2017;53(3):464–476. doi:10.1007/s11262-017-1445-z
  • Nazir A, Dong Z, Liu J, et al. Isolation, characterization, and genome sequence analysis of a novel lytic phage, Xoo-sp15 Infecting Xanthomonas oryzae pv. oryzae. Curr Microbiol. 2021;78:3192–3200.
  • Dong Z, Xing S, Liu J, et al. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J Gen Virol. 2018;99(10):1453–1462. doi:10.1099/jgv.0.001133
  • Li L, Zhang Z. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol Biol Rep. 2014;41(9):5829–5838. doi:10.1007/s11033-014-3457-2
  • Chang H-C, Chen C-R, Lin J-W, et al. Isolation and characterization of novel giant Stenotrophomonas maltophilia phage φSMA5. Appl Environ Microbiol. 2005;71(3):1387–1393. doi:10.1128/AEM.71.3.1387-1393.2005
  • Yu X, Xu Y, Gu Y, Zhu Y, Liu X. Characterization and genomic study of “phiKMV-Like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-016-0028-x
  • Wang R, Cong Y, Mi Z, et al. Characterization and complete genome sequence analysis of phage GP4, a novel lytic Bcep22-like podovirus. Arch Virol. 2019;164(9):2339–2343. doi:10.1007/s00705-019-04309-7
  • Han P, Hu Y, An X, Song L, Fan H, Tong Y. Biochemical and genomic characterization of a novel bacteriophage BUCT555 lysing Stenotrophomonas maltophilia. Virus Res. 2021;301:198465. doi:10.1016/j.virusres.2021.198465
  • Nazir A, Dong Z, Liu J, et al. Sequence analysis of a jumbo bacteriophage, Xoo-sp14, that infects Xanthomonas oryzae pv. oryzae. Microbiol Resour Announc. 2020;9(48):e01072–01020. doi:10.1128/MRA.01072-20
  • Aziz RK, Bartels D, Best AA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75. doi:10.1186/1471-2164-9-75
  • Boratyn GM, Camacho C, Cooper PS, et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. 2013;41(W1):W29–W33. doi:10.1093/nar/gkt282
  • Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33(suppl_2):W686–W689. doi:10.1093/nar/gki366
  • Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage. 2014;4(2):e27943. doi:10.4161/bact.27943
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi:10.1093/molbev/msr121
  • Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, et al. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J. 2013;10(1):1–12. doi:10.1186/1743-422X-10-100
  • Msimbira LA, Jaiswal SK, Dakora FD. Identification and characterization of phages parasitic on bradyrhizobia nodulating groundnut (Arachis hypogaea L.) in South Africa. Appl Soil Ecol. 2016;108:334–340. doi:10.1016/j.apsoil.2016.09.010
  • Adriaenssens E, Brister JR. How to name and classify your phage: an informal guide. Viruses. 2017;9(4):70. doi:10.3390/v9040070
  • Zeng H, He W, Li C, et al. Complete genome analysis of a novel phage GW1 lysing Cronobacter. Arch Virol. 2019;164(2):625–628. doi:10.1007/s00705-018-4084-3
  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–964. doi:10.1093/nar/25.5.955
  • Chang Y, Lee J-H, Shin H, Heu S, Ryu S. Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage SA12. Virus Genes. 2013;47(2):389–393. doi:10.1007/s11262-013-0938-7
  • Bai Q, Zhang W, Yang Y, et al. Characterization and genome sequencing of a novel bacteriophage infecting Streptococcus agalactiae with high similarity to a phage from Streptococcus pyogenes. Arch Virol. 2013;158(8):1733–1741. doi:10.1007/s00705-013-1667-x
  • Dalmasso M, De Haas E, Neve H, et al. Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS One. 2015;10(9):e0138651. doi:10.1371/journal.pone.0138651
  • Shi Y, Yan Y, Ji W, et al. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J. 2012;9(1):1–11. doi:10.1186/1743-422X-9-70
  • Kongari R, Rajaure M, Cahill J, et al. Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinform. 2018;19(1):1–26. doi:10.1186/s12859-018-2342-8
  • Guilliam TA, Keen BA, Brissett NC, Doherty AJ. Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes. Nucleic Acids Res. 2015;43(14):6651–6664. doi:10.1093/nar/gkv625
  • Lu H, Yan P, Xiong W, Wang J, Liu X. Genomic characterization of a novel virulent phage infecting Shigella flexneri and isolated from sewage. Virus Res. 2020;283:197983. doi:10.1016/j.virusres.2020.197983
  • Guinta D, Lindberg G, Rothman-Denes L. Bacteriophage N4-coded 5’—-3ʹexonuclease. Purification and characterization. J Biol Chem. 1986;261(23):10736–10743. doi:10.1016/S0021-9258(18)67447-2
  • O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald G, Ross R. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+ C content. J Bacteriol. 2004;186(9):2862–2871. doi:10.1128/JB.186.9.2862-2871.2004
  • North OI, Sakai K, Yamashita E, et al. Phage tail fibre assembly proteins employ a modular structure to drive the correct folding of diverse fibres. Nature Microbiol. 2019;4(10):1645–1653. doi:10.1038/s41564-019-0477-7
  • Lin H, Simon MN, Black LW. Purification and characterization of the small subunit of phage T4 terminase, gp16, required for DNA packaging. J Biol Chem. 1997;272(6):3495–3501. doi:10.1074/jbc.272.6.3495