542
Views
10
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A New Method Based on LAMP-CRISPR–Cas12a-Lateral Flow Immunochromatographic Strip for Detection

, , , , , , , , & ORCID Icon show all
Pages 685-696 | Published online: 27 Feb 2022

References

  • Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–874. doi:10.1038/s41587-020-0513-4
  • Lahiri S, Venkataraman R, Jagan A, et al. Evaluation of LAMP-based assays for carbapenemase genes. J Med Microbiol. 2019;68(10):1431–1437. doi:10.1099/jmm.0.001050
  • Nakano R, Nakano A, Ishii Y, et al. Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP). J Infect Chemother. 2015;21(3):202–206. doi:10.1016/j.jiac.2014.11.010
  • Solanki R, Vanjari L, Ede N, et al. Evaluation of LAMP assay using phenotypic tests and conventional PCR for detection of bla NDM-1 and bla KPC genes among carbapenem-resistant clinical Gram-negative isolates. J Med Microbiol. 2013;62(Pt 10):1540–1544. doi:10.1099/jmm.0.059907-0
  • Srisrattakarn A, Lulitanond A, Wilailuckana C, et al. Rapid and simple identification of carbapenemase genes, bla NDM, bla OXA-48, bla VIM, bla IMP-14 and bla KPC groups, in Gram-negative bacilli by in-house loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J Microbiol Biotechnol. 2017;33(7):130. doi:10.1007/s11274-017-2295-5
  • Zalas-Więcek P, Gospodarek-Komkowska E, Smalczewska A. Rapid detection of genes encoding extended-spectrum beta-lactamase and carbapenemase in clinical Escherichia coli isolates with eazyplex SuperBug CRE system. Microb Drug Resist. 2020;26(10):1245–1249. doi:10.1089/mdr.2019.0311
  • Baek YH, Cheon HS, Park SJ, et al. Rapid and sensitive portable molecular diagnosis of SFTS virus using Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP). J Microbiol Biotechnol. 2018;28(11):1928–1936. doi:10.4014/jmb.1806.06016
  • Rödel J, Egerer R, Suleyman A, et al. Use of the variplex™ SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. J Clin Virol. 2020;132:104616. doi:10.1016/j.jcv.2020.104616
  • Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses. 2020;141:109786. doi:10.1016/j.mehy.2020.109786
  • Augustine R, Hasan A, Das S, et al. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020;9(8):182.
  • Zhang H, Xu Y, Fohlerova Z, et al. LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. Trends Analyt Chem. 2019;113:44–53. doi:10.1016/j.trac.2019.01.015
  • Yao R, Liu D, Jia X, et al. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol. 2018;3(3):135–149. doi:10.1016/j.synbio.2018.09.004
  • Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439. doi:10.1126/science.aar6245
  • Murugan K, Seetharam AS, Severin AJ, et al. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem. 2020;295(17):5538–5553. doi:10.1074/jbc.RA120.012933
  • Manghwar H, Lindsey K, Zhang X, et al. CRISPR/Cas System: recent advances and future prospects for genome editing. Trends Plant Sci. 2019;24(12):1102–1125. doi:10.1016/j.tplants.2019.09.006
  • Kim H, Lee WJ, Oh Y, et al. Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. Nucleic Acids Res. 2020;48(15):8601–8616. doi:10.1093/nar/gkaa605
  • Liang M, Li Z, Wang W, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun. 2019;10(1):3672. doi:10.1038/s41467-019-11648-1
  • Bai J, Lin H, Li H, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Front Microbiol. 2019;10:2830. doi:10.3389/fmicb.2019.02830
  • Swartjes T, Staals RHJ, van der Oost J. Editor’s cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochem Soc Trans. 2020;48(1):207–219. doi:10.1042/BST20190563
  • Zhao Y, Boeke JD. CRISPR-Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference. Nucleic Acids Res. 2020;48(10):5788–5798. doi:10.1093/nar/gkaa329
  • Dai Y, Somoza RA, Wang L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew Chem Int Ed Engl. 2019;58(48):17399–17405. doi:10.1002/anie.201910772
  • Wang B, Wang R, Wang D, et al. Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Anal Chem. 2019;91(19):12156–12161. doi:10.1021/acs.analchem.9b01526
  • Stella S, Mesa P, Thomsen J, et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell. 2018;175(7):1856–1871.e21. doi:10.1016/j.cell.2018.10.045
  • Breinig M, Schweitzer AY, Herianto AM, et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat Methods. 2019;16(1):51–54. doi:10.1038/s41592-018-0262-1
  • Lee K, Zhang Y, Kleinstiver BP, et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J. 2019;17(2):362–372. doi:10.1111/pbi.12982
  • Sun Y, Liu H, Shen Y, et al. Cas12a-activated universal field-deployable detectors for bacterial diagnostics. ACS Omega. 2020;5(24):14814–14821. doi:10.1021/acsomega.0c01911
  • Ding X, Yin K, Li Z, et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) Assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus. bioRxiv. 2020;21(03):998724.
  • Smith CW, Nandu N, Kachwala MJ, et al. Probing CRISPR-Cas12a nuclease activity using double-stranded DNA-templated fluorescent substrates. Biochemistry. 2020;59(15):1474–1481. doi:10.1021/acs.biochem.0c00140
  • Mukama O, Yuan T, He Z, et al. A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18. Sens Actuators B Chem. 2020;316:128119. doi:10.1016/j.snb.2020.128119
  • Yuan T, Mukama O, Li Z, et al. A rapid and sensitive CRISPR/Cas12a based lateral flow biosensor for the detection of Epstein-Barr virus. Analyst. 2020;145(19):6388–6394. doi:10.1039/D0AN00663G
  • Curti LA, Federico PB, Guillermo DR, et al. CRISPR-based platform for carbapenemases and emerging viruses detection using Cas12a (Cpf1) effector nuclease. Emerg Microbes Infect. 2020;9(1):1140–1148. doi:10.1080/22221751.2020.1763857
  • Bathoorn E, Tsioutis C, da Silva Voorham JM, et al. Emergence of pan-resistance in KPC-2 carbapenemase-producing Klebsiella pneumoniae in Crete, Greece: a close call. J Antimicrob Chemother. 2016;71(5):1207–1212. doi:10.1093/jac/dkv467
  • Chen L, Mathema B, Chavda KD, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–696. doi:10.1016/j.tim.2014.09.003
  • Esra DC, Nilüfer A. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol. 2015;62(4):867–874. doi:10.18388/abp.2015_1148
  • da Silva RM, Traebert J, Galato D. Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: a review of epidemiological and clinical aspects. Expert Opin Biol Ther. 2012;12(6):663–671. doi:10.1517/14712598.2012.681369
  • Arnold RS, Thom KA, Sharma S, Phillips M, Kristie johnson J, Morgan DJ. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J. 2011;104(1):40–45. doi:10.1097/SMJ.0b013e3181fd7d5a
  • Mustafa MI, Makhawi AM. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 2021;59(3):e00745–20. doi:10.1128/JCM.00745-20