914
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes

ORCID Icon, ORCID Icon &
Pages 413-426 | Published online: 05 Feb 2022

References

  • World Heath Organization. Bibliography of scientific publications on antimicrobial resistance from South-East Asia Region, Printed in India. © World Health Organization; 2011.
  • Gashe F, Mulisa E, Mekonnen M, Zeleke G. Antimicrobial resistance profile of different clinical isolates against third-generation cephalosporins. J Pharmaceut. 2018;2018:1–7. doi:10.1155/2018/5070742
  • Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone Antibiotics. Med Chem Commun. 2019;10(10):1719–1739. doi:10.1039/C9MD00120D
  • Sharma D, Patel RP, Zaidi STR, Sarker MMR, Lean QY, Ming LC. Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Front Pharmacol. 2017;8:546. doi:10.3389/fphar.2017.00546
  • Vidyavathi M, Srividya G. A review on ciprofloxacin: dosage form perspective. Int J Appl Pharmaceut. 2018;10(4):6. doi:10.22159/ijap.2018v10i4.25315
  • Reis ACC, Santos SRS, Souza SC, Saldanha MG, Pitanga TN, Oliveira RR. Ciprofloxacin resistance pattern among bacteria isolated from patients with community-acquired urinary tract infection. Rev Inst Med Trop Sao Paulo. 2016;58:53. doi:10.1590/S1678-9946201658053
  • Mulder M, de Jong JCK, Goessens WHF, et al. Risk factors for resistance to ciprofloxacin in community-acquired urinary tract infections due to Escherichia coli in an elderly population. J Antimicrob Chemother. 2017;72:281–289. doi:10.1093/jac/dkw399
  • Lee C-R, Cho I, Jeong B, Lee S. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health. 2013;10(9):4274–4305.
  • Aruguete DM, Kim B, Hochella MF, et al. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Processes Impacts. 2013;15(1):93–102.
  • Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria — “A Battle of the Titans”. Front Microbiol. 2018;9:1441.
  • Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol. 2019;68(1):1–10. doi:10.1099/jmm.0.000873
  • Scheld WM. Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis. 2003;9(1). doi:10.3201/eid0901.020277
  • Ahmad I, Ahmad S, Rumbaugh KP, Editors. Antibacterial Drug Discovery to Combat MDR. Singapore: © Springer Nature Singapore Pte Ltd; 2019.
  • Hamed SM, Elkhatib WF, El-Mahallawy HA, Helmy MM, Ashour MS, Aboshanab KMA. Multiple mechanisms contributing to ciprofloxacin resistance among gram negative bacteria causing infections to cancer patients. Sci Rep. 2018;8(1):12268. doi:10.1038/s41598-018-30756-4
  • Campion JJ, McNamara JJ, Evans ME. Evolution of ciprofloxacin-resistant Staphylococcus aureus in in vitro pharmacokinetic environments. Antimicrob Agents Chemother. 2004;48(12):4733–4744. doi:10.1128/AAC.48.12.4733-4744.2004
  • Cirz RT, Romesberg FE. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob Agents Chemother. 2006;50(1):220–225. doi:10.1128/AAC.50.1.220-225.2006
  • Zhao F, Yang H, Bi D, Khaledi A, Qiao M. A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections. Microb Pathog. 2020;144:104196. doi:10.1016/j.micpath.2020.104196
  • O’Regan E, Quinn T, Frye JG, et al. Fitness costs and stability of a high-level ciprofloxacin resistance phenotype in Salmonella enterica serotype Enteritidis: reduced infectivity associated with decreased expression of Salmonella pathogenicity Island 1 genes. Antimicrob Agents Chemother. 2010;54(1):367–374. doi:10.1128/AAC.00801-09
  • Ghaffari S, Varshosaz J, Haririan I, Khoshayand MR, Azarmi S, Gazori T. Ciprofloxacin loaded Alginate/Chitosan and solid lipid nanoparticles, preparation, and characterization. J Dispers Sci Technol. 2012;33(5):685–689. doi:10.1080/01932691.2011.579831
  • Kumar S, Bhanjana G, Kumar A, Taneja K, Dilbaghi N, Kim K-H. Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. Chem Phys Lipids. 2016;200:126–132. doi:10.1016/j.chemphyslip.2016.09.002
  • Bali GK, Singla S, Kashyap Y, et al. Preparation, physico-chemical characterization and pharmacodynamics of ceftriaxone loaded BSA nanoparticles. J Nanomed Nanotechnol. 2018;9:509. doi:10.4172/2157-7439.1000509
  • Jaison J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–1074. doi:10.3762/bjnano.9.98
  • Patel S, Singh D, Srivastava S, et al. Nanoparticles as a platform for antimicrobial drug delivery. Adv Pharmacol Pharm. 2017;5(3):31–43. doi:10.13189/app.2017.050301
  • Sobhani Z, Samani SM, Montaseri H, Khezri E. Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull. 2017;7(3):427–432. doi:10.15171/apb.2017.051
  • Marei N, Elwahy AHM, Salah TA, El Sherif Y, El-Samie EA. Enhanced antibacterial activity of Egyptian local insects’ chitosan-based nanoparticles loaded with ciprofloxacin-HCl. Biomac. 2019;126:262–272.
  • Shafiei S, Hassanshahian M, Shakeri S, Hamayeli H. Evaluation the antibacterial activity of nanoantibiotics imipenem and ciprofloxacin loaded in human serum albumin against some antibiotic-resistant pathogenic bacteria. J Exper Nanosci. 2020;15(1):350–362. doi:10.1080/17458080.2020.1796978
  • Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv. 2017;7(12):7022. doi:10.1039/C6RA27868J
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan M, Adibkia K. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against. Artif Cells Nanomed Biotechnol. 2017;45(3):535–543. doi:10.3109/21691401.2016.1161637
  • Günday C, Anand S, Gencer HB, et al. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res. 2020;10(3):706–720. doi:10.1007/s13346-020-00736-1
  • Dilbaghi N, Kaur H, Ahuja M, Arora P, Kumar S. Synthesis and evaluation of ciprofloxacin-loaded carboxymethyl tamarind kernel polysaccharide nanoparticles. J Exper Nanosci. 2014;9(10):1015–1025. doi:10.1080/17458080.2013.771244
  • Torge A, Wagner S, Chaves PS, et al. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int J Pharm. 2017;527(1–2):92–102. doi:10.1016/j.ijpharm.2017.05.013
  • Ghosh S, Qi R, Carter KA, Zhang G, Pfeifer BA, Lovell JF. Loading and releasing ciprofloxacin in photoactivatable liposomes. Biochem Eng J. 2019;141:43–48. doi:10.1016/j.bej.2018.10.008
  • Westmeier D, Siemer S, Vallet C, et al. Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. Nanoscale Adv. 2020;2(11):5428–5440. doi:10.1039/D0NA00644K
  • Siemer S, Westmeier D, Vallet C, et al. Resistance to nano-based antifungals is mediated by biomolecule coronas. ACS Appl Mater Interfaces. 2019;11(1):104–114. doi:10.1021/acsami.8b12175
  • Niño-Martínez N, Orozco NFS, Martínez-Castañón G-A, Méndez FT, Ruiz F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci. 2019;20(11):2808. doi:10.3390/ijms20112808
  • Salas-Orozco M, Niño-Martínez N, Martínez-Castañón G-A, et al. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater. 2019;2019. doi:10.1155/2019/7630316
  • Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomater Sci. 2020;8(17):4653–4664. doi:10.1039/D0BM00558D
  • Manimekalai P, Manavalan R. Selection of excipients for the formulation of Ceftriaxone sodium loaded chitosan nanoparticle through drug-excipient compatibility testing. Int J PharmTech Res. 2015;8(1):5–10.
  • Kucukoglu V, Uzuner H, Kenar H, Karadenizli A. In vitro antibacterial activity of ciprofloxacin loaded chitosan microparticles and their effects on human lung epithelial cells. Int J Pharm. 2019;569:118578. doi:10.1016/j.ijpharm.2019.118578
  • Mahdavinia GR, Karimi MH, Soltaniniya M, Massoumi B. In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol. 2019;126:443–453. doi:10.1016/j.ijbiomac.2018.12.240
  • Raveendran NT, Mohandas A, Menon RR, Menon AS, Biswas R, Jayakumar R. Ciprofloxacin and fluconazole containing fibrin nanoparticles incorporated chitosan bandages for the treatment of polymicrobial wound infections. ACS Appl Bio Mater. 2018;2(1):243–254.
  • Gnanadhas DP, Thomas MB, Elango M, Raichur AM, Chakravortty D. Chitosan-dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother. 2013;68(11):2576–2586. doi:10.1093/jac/dkt252
  • Kumar GV, Su CH, Velusamy P. Ciprofloxacin loaded genipin cross-linked chitosan/heparin nanoparticles for drug delivery application. Mater Lett. 2016;180:119–122. doi:10.1016/j.matlet.2016.05.108
  • Buck E, Maisuria V, Tufenkji N, Cerruti M. Antibacterial properties of PLGA electrospun scaffolds containing ciprofloxacin incorporated by blending or physisorption. ACS Appl Bio Mater. 2018;1(3):627–635. doi:10.1021/acsabm.8b00112
  • Türeli NG, Torge A, Juntke J, et al. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharmaceut Biopharmaceut. 2017;17:363–371.
  • Türeli NG, Türeli AE, Schneider M. Optimization of ciprofloxacin complex loaded PLGA nanoparticles for pulmonary treatment of cystic fibrosis infections: design of experiments approach. Int J Pharm. 2016;515(1–2):343–351.
  • Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–158. doi:10.1016/j.jconrel.2015.04.028
  • Thomas N, Thorn C, Richter K, Thierry B, Prestidge C. Efficacy of poly-lactic-co-glycolic acid micro- and nanoparticles of ciprofloxacin against bacterial biofilms. J Pharm Sci. 2016;105:1–8.
  • Hadinoto K, Cheow WS. Nano-antibiotics in chronic lung infection therapy against Pseudomonas aeruginosa. Colloids Surf B Biointerfaces. 2014;116:772–785. doi:10.1016/j.colsurfb.2014.02.032
  • Cipolla D, Wu H, Eastman S, Redelmeier R, Gonda I, Chan H. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J Pharm Sci. 2014;103(1):314–327. doi:10.1002/jps.23795
  • Ong HX, Benaouda F, Traini D, et al. In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulization. Eur J Pharmaceut Biopharmaceut. 2014;86(1):83–89. doi:10.1016/j.ejpb.2013.06.024
  • Page-Clisson ME, Pinto-Alphandary H, Chachaty E, Couvreur P, Andremont A. Drug targeting by polyalkylcyanoacrylate nanoparticles is not efficient against persistent Salmonella. Pharm Res. 1998;15(4):544–549. doi:10.1023/A:1011921608964
  • Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release. 2008;127(1):50–58. doi:10.1016/j.jconrel.2007.12.011
  • Magallanes M, Dijkstra J, Fierer J. Liposome-incorporated ciprofloxacin in treatment of murine salmonellosis. Antimicrob Agents Chemother. 1993;37(11):2293–2297. doi:10.1128/AAC.37.11.2293
  • Hsu CY, Sung CT, Aljuffali IA, Chen CH, Hu KY, Fang JY. Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. Nanomed Nanotechnol Biol Med. 2018;14(2):215–225. doi:10.1016/j.nano.2017.10.006
  • Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res. 2012;29:3335–3346.
  • Antoniu SA. Inhaled ciprofloxacin for chronic airways infections caused by Pseudomonas aeruginosa. Expert Rev Anti Infect Ther. 2012;10(12):1439–1446. doi:10.1586/eri.12.136
  • Yanagihara K. Design of anti-bacterial drug and anti-mycobacterial drug for drug delivery system. Curr Pharm Des. 2002;8(6):475–482. doi:10.2174/1381612023395808
  • Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment Mucoadhesive liposomes in ocular delivery. Drug Dev Ind Pharm. 2010;36(1):108–118. doi:10.3109/03639040903099751
  • Zhang J, Ma PX. Host-guest interaction mediated polymeric core-shell assemblies: versatile nanocarriers for drug delivery. Angew Chem Int Ed. 2009;48(5):964–968. doi:10.1002/anie.200804135
  • Chen M, Xie S, Wei J, Song X, Ding Z, Li X. Antibacterial micelles with vancomycin-mediated targeting and pH/lipase-triggered release of antibiotics. ACS Appl Mater Interfaces. 2018;10(43):36814–36823. doi:10.1021/acsami.8b16092
  • Taha EI, Badran MM, El-Anazi MH, Bayomi MA, El-Bagory IM. Role of pluronic F127 micelles in enhancing ocular delivery of ciprofloxacin. J Mol Liq. 2014;199(2014):251–256. doi:10.1016/j.molliq.2014.09.021
  • Zadeh M, Sharif B, Esfahani G, Salimi Y. Permeability of ciprofloxacin-loaded polymeric micelles including ginsenoside as P-glycoprotein inhibitor through a Caco-2 cells monolayer as an intestinal absorption model. Molecules. 2018;23(8):1904. doi:10.3390/molecules23081904
  • Garhwal R, Shady SF, Ellis EJ, et al. Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. IOVS. 2012;53(3):1341–1352.
  • Fawaz F, Bonini F, Maugein J, Lagueny AM. Ciprofloxacin-loaded polyisobutylcyanoacrylate nanoparticles: pharmacokinetics and in vitro antimicrobial activity. Int J Pharm. 1998;168(2):255–259. doi:10.1016/S0378-5173(98)00116-1
  • Kumar GS, Govindan R, Girija EK. In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B. 2014;2(31):5052–5060. doi:10.1039/c4tb00339j
  • Panda BP, Patnaik S, Maharana RL. Current trends in design and development of nanopharmaceutical dosage forms. Bioequiv Bioavailab Int J. 2017;1(1):000104.
  • Kooti M, Sedeh AN, Motamedi H, Rezatofighi SE. Magnetic graphene oxide inlaid with silver nanoparticles as antibacterial and drug delivery composite. Appl Microbiol Biotechnol. 2018;102(8):3607–3621. doi:10.1007/s00253-018-8880-1
  • Zavarshani M, Ahmadi M, Saei HD, Tehrani AA, Naghadeh BD. Comparison therapeutic effects of ciprofloxacin, silver nanoparticles and their combination in the treatment of Pseudomonas keratitis in rabbit: an experimental study. Iran J Pharmaceut Res. 2019;18(1):320–327.
  • Mohsen E, El-Borady OM, Mohamed MB, Fahim IS. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J Radiat Res Appl Sci. 2020;13(1):416–425.
  • Sreedharan SM, Singh R. Ciprofloxacin functionalized biogenic gold nanoflowers as nanoantibiotics against pathogenic bacterial strains. Int J Nanomedicine. 2019;14:9905–9916.
  • Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. Ciprofloxacin-protected gold nanoparticles. Langmuir. 2004;20:1909–1914.
  • Nisar M, Khan SA, Qayum M, et al. Robust synthesis of ciprofloxacin-capped metallic nanoparticles and their urease inhibitory assay. Molecules. 2016;21:411.
  • Banoee M, Seif S, Nazari ZE, et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B Appl Biomater. 2010;93:557.
  • Seif S, Kazempour ZB, Pourmand MR, et al. Preparation of ciprofloxacin-coated zinc oxide nanoparticles and their antibacterial effects against clinical isolates of Staphylococcus aureus and Escherichia coli. Arzneimittelforschung. 2011;61(8):472–476.
  • Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2012;9(11):1035–1052.
  • Auger S, Henry C, Péchoux C, et al. Exploring multiple effects of Zn0.15Mg0.85O nanoparticles on Bacillus subtilis and macrophages. Sci Rep. 2018;8:12276.
  • Rodrigues GR, López-Abarrategui C, de la Serna Gómez I, Dias SC, Otero-González AJ, Franco OL. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int J Pharm. 2018;555:356–367.
  • El-Salamouni NS, Farid RM, El-Kamel AH, El-Gamal SS. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm. 2015;496(2):976–983.
  • Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech. 2012;13(2):411–421.
  • Mehnert W. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–196.
  • Qu J, Zhang L, Chen Z, et al. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Deliver. 2016;23(9):3408–3416.
  • Pignatello R, Leonardi A, Fuochi V, Petronio G, Greco AS, Furneri PM. A method for efficient loading of ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: formulation and microbiological evaluation. Nanomater. 2018;8:304.
  • Jain D, Banerjee R. Comparison of ciprofloxacin HCl-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater. 2008;86B(1):105–112.
  • Shazly GA. Ciprofloxacin controlled-solid lipid nanoparticles: characterization, in vitro release, and antibacterial activity assessment. Biomed Res Int. 2017;2017:2120734.