131
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genetic Characterization of Four Groups of Chromosome-Borne Accessory Genetic Elements Carrying Drug Resistance Genes in Providencia

, , ORCID Icon, , , , , , , & show all
Pages 2253-2270 | Published online: 27 Apr 2022

References

  • O’Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000;13(4):534–546. doi:10.1128/CMR.13.4.534
  • Stock I, Wiedemann B. Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alcalifaciens and P. rustigianii strains. J Med Microbiol. 1998;47(7):629–642. doi:10.1099/00222615-47-7-629
  • Swiatlo E, Kocka FE. Inducible expression of an aminoglycoside-acetylating enzyme in Providencia stuartii. J Antimicrob Chemother. 1987;19(1):27–30. doi:10.1093/jac/19.1.27
  • Yaghoubi S, Zekiy AO, Krutova M, et al. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis. 2021;1:1–20.
  • Samonis G, Korbila IP, Maraki S, et al. Trends of isolation of intrinsically resistant to colistin Enterobacteriaceae and association with colistin use in a tertiary hospital. Eur J Clin Microbiol Infect Dis. 2014;33(9):1505–1510. doi:10.1007/s10096-014-2097-8
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016;4(2):10. doi:10.1128/microbiolspec.VMBF-0016-2015
  • Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49(1):577–601. doi:10.1146/annurev-genet-112414-055018
  • Coetzee JN, Datta N, Hedges RW. R factors from Proteus rettgeri. J Gen Microbiol. 1972;72(3):543–552. doi:10.1099/00221287-72-3-543
  • Olaitan AO, Diene SM, Assous MV, Rolain J-M. Genomic plasticity of multidrug-resistant NDM-1 positive clinical isolate of Providencia rettgeri. Genome Biol Evol. 2016;8(3):723–728. doi:10.1093/gbe/evv195
  • Flannery EL, Mody L, Mobley HLT. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 2009;77(11):4887–4894. doi:10.1128/IAI.00705-09
  • Li R, Lu X, Peng K, et al. Deciphering the structural diversity and classification of the mobile tigecycline resistance gene tet(X)-bearing plasmidome among bacteria. mSystems. 2020;5(2):e00134–e00120. doi:10.1128/mSystems.00134-20
  • Ryan MP, Armshaw P, O’Halloran JA, Pembroke JT. Analysis and comparative genomics of R997, the first SXT/R391 integrative and conjugative element (ICE) of the Indian Sub-Continent. Sci Rep. 2017;7(1):8562. doi:10.1038/s41598-017-08735-y
  • Taviani E, Ceccarelli D, Lazaro N, et al. Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiol Ecol. 2008;64(1):45–54. doi:10.1111/j.1574-6941.2008.00455.x
  • Pembroke JT, Piterina AV. A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett. 2006;264(1):80–88. doi:10.1111/j.1574-6968.2006.00452.x
  • Xu J, Jia H, Cui G, et al. ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. Vet Microbiol. 2018;220:18–23. doi:10.1016/j.vetmic.2018.05.002
  • López-Pérez M, Gonzaga A, Rodriguez-Valera F. Genomic diversity of “deep ecotype” Alteromonas macleodii isolates: evidence for Pan-Mediterranean clonal frames. Genome Biol Evol. 2013;5(6):1220–1232. doi:10.1093/gbe/evt089
  • Wang H, Sun B, Xie G, Wan X, Huang J, Song X. Spotlight on a novel bactericidal mechanism and a novel SXT/R391-like integrative and conjugative element, carrying multiple antibiotic resistance genes, in Pseudoalteromonas flavipulchra strain CDM8. Microbiol Res. 2021;242:126598. doi:10.1016/j.micres.2020.126598
  • Wozniak RAF, Fouts DE, Spagnoletti M, et al. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 2009;5(12):e1000786. doi:10.1371/journal.pgen.1000786
  • Guedon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that pirate bacterial conjugative systems. Genes. 2017;8(11):337. doi:10.3390/genes8110337
  • Carraro N, Rivard N, Ceccarelli D, Colwell RR, Burrus V. IncA/C conjugative plasmids mobilize a new family of multidrug resistance islands in clinical Vibrio cholerae Non-O1/Non-O139 isolates from Haiti. mBio. 2016;7(4):e00509–e00516. doi:10.1128/mBio.00509-16
  • Soliman AM, Shimamoto T, Nariya H, Shimamoto T. Emergence of Salmonella genomic island 1 variant SGI1-W in a clinical isolate of Providencia stuartii from Egypt. Antimicrob Agents Chemother. 2019;63(1):e01793–e01718. doi:10.1128/AAC.01793-18
  • Luo X, Yin Z, Zeng L, et al. Chromosomal integration of huge and complex blaNDM-carrying genetic elements in Enterobacteriaceae. Front Cell Infect Microbiol. 2021;11:690799. doi:10.3389/fcimb.2021.690799
  • Peters JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol Microbiol. 2019;112(6):1635–1644. doi:10.1111/mmi.14383
  • Parks AR, Peters JE. Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. J Bacteriol. 2007;189(5):2170–2173. doi:10.1128/JB.01536-06
  • Ramírez MS, Piñeiro S, Centrón D. Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrob Agents Chemother. 2010;54(2):699–706. doi:10.1128/AAC.01392-08
  • Zhang Y, Cao Y, Zhang L, Hikichi Y, Ohnishi K, The LJ. Tn7-based genomic integration is dependent on an attTn7 box in the glmS gene and is site-specific with monocopy in Ralstonia solanacearum species complex. Mol Plant Microbe Interact. 2021;34(7):720–725. doi:10.1094/MPMI-11-20-0325-SC
  • Ramírez MS, Quiroga C, Centrón D. Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(12):5179–5181. doi:10.1128/AAC.49.12.5179-5181.2005
  • Fu J, Zhang J, Yang L, et al. Precision methylome and in vivo methylation kinetics characterization of Klebsiella Pneumoniae. Genom Proteom Bioinform. 2021. doi:10.1016/j.gpb.2021.04.002
  • De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666–2669. doi:10.1093/bioinformatics/bty149
  • Qu D, Shen Y, Hu L, et al. Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:IncpA1763-KPC:IncN1 or IncFIIpHN7A8:IncpA1763-KPC:IncN1. Infect Drug Resist. 2019;12:285–296. doi:10.2147/IDR.S189168
  • CLSI. CLSI supplement M100. In: Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • Hochhut B, Beaber JW, Woodgate R, Waldor MK. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 2001;183(4):1124–1132. doi:10.1128/JB.183.4.1124-1132.2001
  • Botelho J, Schulenburg H. The role of integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol. 2021;29(1):8–18. doi:10.1016/j.tim.2020.05.011
  • Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One. 2015;10(5):e0123063. doi:10.1371/journal.pone.0123063
  • Partridge SR, Brown HJ, Stokes HW, Hall RM. Transposons Tn1696 and Tn21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother. 2001;45(4):1263–1270. doi:10.1128/AAC.45.4.1263-1270.2001
  • Liang Q, Jiang X, Hu L, et al. Sequencing and genomic diversity analysis of IncHI5 plasmids. Front Microbiol. 2018;9:3318. doi:10.3389/fmicb.2018.03318
  • Desloges I, Taylor JA, Leclerc J-M, et al. Identification and characterization of OmpT-like proteases in uropathogenic Escherichia coli clinical isolates. MicrobiologyOpen. 2019;8(11):e915. doi:10.1002/mbo3.915
  • Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mob DNA. 2010;1(1):18. doi:10.1186/1759-8753-1-18
  • McGrath BM, Pembroke JT. Detailed analysis of the insertion site of the mobile elements R997, pMERPH, R392, R705 and R391 in E. coli K12. FEMS Microbiol Lett. 2004;237(1):19–26. doi:10.1111/j.1574-6968.2004.tb09673.x
  • Li X, Du Y, Du P, et al. SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance. Sci Rep. 2016;6:37372. doi:10.1038/srep37372
  • Sarkar A, Morita D, Ghosh A, et al. Altered integrative and conjugative elements (ICEs) in recent Vibrio cholerae O1 isolated from cholera cases, Kolkata, India. Front Microbiol. 2019;10:2072. doi:10.3389/fmicb.2019.02072
  • Fang Y, Wang Y, Li Z, et al. Distribution and genetic characteristics of SXT/R391 integrative conjugative elements in Shewanella spp. from China. Front Microbiol. 2018;9:920. doi:10.3389/fmicb.2018.00920
  • Carraro N, Poulin D, Burrus V. Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family: the line between ICEs and conjugative plasmids is getting thinner. PLoS Genet. 2015;11(6):e1005298. doi:10.1371/journal.pgen.1005298
  • Wozniak RAF, Waldor MK. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 2009;5(3):e1000439. doi:10.1371/journal.pgen.1000439
  • Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res. 2014;42(16):10618–10631. doi:10.1093/nar/gku734
  • Huguet KT, Gonnet M, Doublet B, Cloeckaert A. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella genomic island 1. Sci Rep. 2016;6(1):32285. doi:10.1038/srep32285
  • Peters JE, Craig NL. Tn7: smarter than we thought. Nat Rev Mol Cell Biol. 2001;2(11):806–814. doi:10.1038/35099006
  • Sun F, Zhou D, Sun Q, et al. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep. 2016;6(1):33982. doi:10.1038/srep33982
  • Xie L, Wu J, Zhang F, et al. Molecular epidemiology and genetic characteristics of various blaPER genes in Shanghai, China. Antimicrob Agents Chemother. 2016;60(6):3849–3853. doi:10.1128/AAC.00258-16
  • Chen L, Hu H, Chavda KD, et al. Complete sequence of a KPC-producing IncN multidrug-resistant plasmid from an epidemic Escherichia coli sequence type 131 strain in China. Antimicrob Agents Chemother. 2014;58(4):2422–2425. doi:10.1128/AAC.02587-13
  • Stanisich VA, Bennett PM, Richmond MH. Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J Bacteriol. 1977;129(3):1227–1233. doi:10.1128/jb.129.3.1227-1233.1977
  • L’Abée-Lund TM, Sørum H. Functional Tn5393-like transposon in the R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subspecies Salmonicida isolated in Norway. Appl Environ Microbiol. 2000;66(12):5533–5535. doi:10.1128/AEM.66.12.5533-5535.2000
  • Wrighton CJ, Strike P. A pathway for the evolution of the plasmid NTP16 involving the novel kanamycin resistance transposon Tn4352. Plasmid. 1987;17(1):37–45. doi:10.1016/0147-619X(87)90006-0
  • Wang L, Fang H, Feng J, et al. Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae. Front Microbiol. 2015;6:838. doi:10.3389/fmicb.2015.00838
  • Heffron F, Sublett R, Hedges RW, Jacob A, Falkow S. Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol. 1975;122(1):250–256. doi:10.1128/jb.122.1.250-256.1975
  • Galimand M, Sabtcheva S, Courvalin P, Lambert T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother. 2005;49(7):2949–2953. doi:10.1128/AAC.49.7.2949-2953.2005
  • Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56(2):1087–1089. doi:10.1128/AAC.05620-11