126
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Minocycline Susceptibility and tetB Gene in Carbapenem-Resistant Acinetobacter baumannii in Taiwan

, , ORCID Icon, , ORCID Icon &
Pages 2401-2408 | Published online: 02 May 2022

References

  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/S1473-3099(17)30753-3
  • Strateva T, Sirakov I, Stoeva T, et al. Carbapenem-resistant Acinetobacter baumannii: current status of the problem in four Bulgarian university hospitals (2014–2016). J Glob Antimicrob Resist. 2019;16:266–273. doi:10.1016/j.jgar.2018.10.027
  • Kuo SC, Chang SC, Wang HY, et al. Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infect Dis. 2012;12(1):200. doi:10.1186/1471-2334-12-200
  • Flamm RK, Shortridge D, Castanheira M, Sader HS, Pfaller MA. In vitro activity of minocycline against U.S. Isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus species complex, Stenotrophomonas maltophilia, and Burkholderia cepacia complex: results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob Agents Chemother. 2019;63(11):e01154–e011519. doi:10.1128/AAC.01154-19
  • Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis. 2019;69(Suppl 7):S565–S575. doi:10.1093/cid/ciz830
  • Alfouzan WA, Noel AR, Bowker KE, Attwood MLG, Tomaselli SG, MacGowan AP. Pharmacodynamics of minocycline against Acinetobacter baumannii studied in a pharmacokinetic model of infection. Int J Antimicrob Agents. 2017;50(6):715–717. doi:10.1016/j.ijantimicag.2017.06.026
  • Ritchie DJ, Garavaglia-Wilson A. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections. Clin Infect Dis. 2014;59(Suppl 6):S374–S380. doi:10.1093/cid/ciu613
  • Fragkou PC, Poulakou G, Blizou A, et al. The role of minocycline in the treatment of nosocomial infections caused by multidrug, extensively drug and pandrug resistant Acinetobacter baumannii: a systematic review of clinical evidence. Microorganisms. 2019;7(6):159. doi:10.3390/microorganisms7060159
  • Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial susceptibility of Acinetobacter calcoaceticus-Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect Dis. 2019;6(Suppl1):S34–S46. doi:10.1093/ofid/ofy293
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30(1):409–447. doi:10.1128/CMR.00058-16
  • Tsakris A, Koumaki V, Dokoumetzidis A. Minocycline susceptibility breakpoints for Acinetobacter baumannii: do we need to re-evaluate them? J Antimicrob Chemother. 2019;74(2):295–297. doi:10.1093/jac/dky448
  • Pogue JM, Neelakanta A, Mynatt RP, Sharma S, Lephart P, Kaye KS. Carbapenem-resistance in gram-negative bacilli and intravenous minocycline: an antimicrobial stewardship approach at the Detroit Medical Center. Clin Infect Dis. 2014;59(Suppl 6):S388–S393. doi:10.1093/cid/ciu594
  • Sklenar I, Spring P, Dettli L. One-dose and multiple-dose kinetics of minocycline in patients with renal disease. Agents Actions. 1977;7(3):369–377. doi:10.1007/BF01969570
  • Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947–953. doi:10.1128/AAC.01388-10
  • Wang P, McElheny CL, Mettus RT, Shanks RMQ, Doi Y. Contribution of the TetB efflux pump to minocycline susceptibility among carbapenem-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2017;61(10):e01176–e011117. doi:10.1128/AAC.01176-17
  • Lomovskaya O, Sun D, Rubio-Aparicio D, et al. Absence of TetB identifies minocycline-susceptible isolates of Acinetobacter baumannii. Int J Antimicrob Agents. 2018;52(3):404–406. doi:10.1016/j.ijantimicag.2018.04.006
  • Huys G, Cnockaert M, Vaneechoutte M, et al. Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals. Res Microbiol. 2005;156(3):348–355. doi:10.1016/j.resmic.2004.10.008
  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–e000817. doi:10.1128/CMR.00088-17
  • Vilacoba E, Almuzara M, Gulone L, et al. Emergence and spread of plasmid-borne tet(B): ISCR2in minocycline-resistant Acinetobacter baumannii isolates. Antimicrob Agents Chemother. 2013;57(1):651–654. doi:10.1128/AAC.01751-12
  • Seputiene V, Povilonis J, Suziedeliene E. Novel variants of AbaR resistance islands with a common backbone in Acinetobacter baumannii isolates of European clone II. Antimicrob Agents Chemother. 2012;56(4):1969–1973. doi:10.1128/AAC.05678-11
  • Nigro SJ, Hall RM. Antibiotic resistance islands in A320 (RUH134), the reference strain for Acinetobacter baumannii global clone 2. J Antimicrob Chemother. 2012;67(2):335–338. doi:10.1093/jac/dkr447
  • Nigro SJ, Hall RM. Tn6167, an antibiotic resistance island in an Australian carbapenem-resistant Acinetobacter baumannii GC2, ST92 isolate. J Antimicrob Chemother. 2012;67(6):1342–1346. doi:10.1093/jac/dks037
  • Zhang X, Li F, Awan F, Jiang H, Zeng Z, Molecular LW. Epidemiology and clone transmission of carbapenem-resistant Acinetobacter baumannii in ICU rooms. Front Cell Infect Microbiol. 2021;11:633817. doi:10.3389/fcimb.2021.633817
  • Lomovskaya O, Sun D, King P, Dudley MN. Tigecycline (TIG) but not minocycline (MINO) selects for clinically relevant efflux-mediated resistance (R) in Acinetobacter spp. (ACB) In Abstract C1–1087 presented at: 54th Interscience Conference on Antimicrobial Agents and Chemotherapy; September 5–9; 2014; Washington, DC, USA.
  • Yang YS, Lee Y, Tseng KC, et al. In vivo and In vitro efficacy of minocycline-based combination therapy for minocycline-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(7):4047–4054. doi:10.1128/AAC.02994-15
  • Chuang YC, Cheng A, Sun HY, et al. Microbiological and clinical characteristics of Acinetobacter baumannii bacteremia: implications of sequence type for prognosis. J Infect. 2019;78(2):106–112. doi:10.1016/j.jinf.2018.10.001
  • Chang HC, Wei YF, Dijkshoorn L, Vaneechoutte M, Tang CT, Chang TC. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S–23S rRNA gene spacer region. J Clin Microbiol. 2005;43(4):1632–1639. doi:10.1128/JCM.43.4.1632-1639.2005
  • Chuang YC, Sheng WH, Li SY, et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with Acinetobacter bacteremia. Clin Infect Dis. 2011;52(3):352–360. doi:10.1093/cid/ciq154
  • Hsueh P-R, Kuo L-C, Chang T-C, et al. Evaluation of the bruker biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry system for identification of blood isolates of Acinetobacter species. J Clin Microbiol. 2014;52(8):3095–3100. doi:10.1128/JCM.01233-14
  • Seifert H, Dolzani L, Bressan R, et al. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol. 2005;43(9):4328–4335. doi:10.1128/JCM.43.9.4328-4335.2005
  • EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0; 2022. Available from: https://www.eucast.org. Accessed Jan 3, 2022.
  • Performance CLSI. Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100. 31th ed. Clinical and Laboratory Standards Institute; 2021.
  • Matthew GD, Stefania Z, Ádám LN, Ibrahim B, Márió G. Insights on carbapenem-resistant Acinetobacter baumannii: phenotypic characterization of relevant isolates. Acta Biologica Szegediensis. 2021;65(1):85–92. doi:10.14232/abs.2021.1.85-92
  • Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(6):3840–3844. doi:10.1128/AAC.00436-16
  • Goff DA, Bauer KA, Mangino JE. Bad bugs need old drugs: a stewardship program’s evaluation of minocycline for multidrug-resistant Acinetobacter baumannii infections. Clin Infect Dis. 2014;59(Suppl 6):S381–S387. doi:10.1093/cid/ciu593
  • Beganovic M, Daffinee KE, Luther MK, LaPlante KL. Minocycline alone and in combination with polymyxin B, meropenem, and sulbactam against carbapenem-susceptible and -resistant Acinetobacter baumannii in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2021;65(3):e01680–e016820. doi:10.1128/AAC.01680-20
  • Cornely OA, Arenz D, Barraud O, et al. Phase I study to evaluate the safety and pharmacokinetics of single and multiple ascending doses of intravenous minocycline in healthy adult subjects. Open Forum Infect Dis. 2018;5(Supp 1):S425–S426. doi:10.1093/ofid/ofy210.1218
  • Rodriguez CH, Nastro M, Vay C, Famiglietti A. In vitro activity of minocycline against multidrug-resistant Acinetobacter baumannii isolates: evaluation of clinical breakpoints and review of literature. Microb Drug Resist. 2021;27(11):1560–1563. doi:10.1089/mdr.2020.0398
  • Coyne S, Guigon G, Courvalin P, Perichon B. Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray. Antimicrob Agents Chemother. 2010;54(1):333–340. doi:10.1128/AAC.01037-09
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260. doi:10.1128/MMBR.65.2.232-260.2001
  • Asadi A, Abdi M, Kouhsari E, et al. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: back to the future. J Glob Antimicrob Resist. 2020;22:161–174. doi:10.1016/j.jgar.2020.01.022