223
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens

, , , ORCID Icon, ORCID Icon, ORCID Icon, , , , , & show all
Pages 1777-1791 | Published online: 12 Apr 2022

References

  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med. 2012;18(5):263–272. doi:10.1016/j.molmed.2012.03.003
  • Wailan AM, Paterson DL. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti-Infect Ther. 2014;12(1):91–115. doi:10.1586/14787210.2014.856756
  • Wu W, Feng Y, Tang G, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–18. doi:10.1128/CMR.00115-18
  • Ripabelli G, Sammarco M, Salzo A, et al. New Delhi metallo-β-lactamase (NDM-1)-producing Klebsiella pneumoniae of sequence type ST11: first identification in a hospital of central Italy. Lett Appl Microbiol. 2020;71(6):652–659. doi:10.1111/lam.13384
  • Snyder B, Montague B, Anandan S, et al. Risk factors and epidemiologic predictors of blood stream infections with New Delhi metallo-b-lactamase (NDM-1) producing Enterobacteriaceae. Epidemiol Infect. 2019;147:e137.
  • Chibabhai V, Nana T, Bosman N, et al. Were all carbapenemases created equal? Treatment of NDM-producing extensively drug-resistant Enterobacteriaceae: a case report and literature review. Infection. 2018;46(1):1–13. doi:10.1007/s15010-017-1070-8
  • Bonnin RA, Poirel L, Nordmann P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 2014;9(1):33–41. doi:10.2217/fmb.13.69
  • Jones LS, Toleman MA, Weeks JL, et al. Plasmid Carriage of bla NDM-1 in clinical Acinetobacter baumannii Isolates from India. Antimicrob Agents Chemother. 2014;58(7):4211–4213. doi:10.1128/AAC.02500-14
  • Loose M, Link I, Naber KG, et al. Carbapenem-containing combination antibiotic therapy against carbapenem-resistant uropathogenic Enterobacteriaceae. Antimicrob Agents Chemother. 2019;64(1):e01839–19. doi:10.1128/AAC.01839-19
  • Chukamnerd A, Pomwised R, Phoo MTP, et al. In vitro synergistic activity of fosfomycin in combination with other antimicrobial agents against carbapenem-resistant Klebsiella pneumoniae isolated from patients in a hospital in Thailand. J Infect Chemother. 2021;27(3):507–514. doi:10.1016/j.jiac.2020.11.004
  • Samonis G, Maraki S, Karageorgopoulos D, et al. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012;31(5):695–701. doi:10.1007/s10096-011-1360-5
  • Kumar S, Vyas A, Mehra S. Utilization of MacConkey-meropenem screening agar for the detection of carbapenem resistant Enterobacteriaceae in a tertiary care hospital. SSRG int j med sci. 2018;2(4):e23.
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. approved standard M100. Wayne, PA: Clinical and Laboratory Standards Institute (CLSI); 2018.
  • Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.002
  • Food and Drug Administration. Drug Safety Communication Increased Risk of Death with Tygacil (Tigecycline) Compared to Other Antibiotics Used to Treat Similar Infections. Washington, DC: FDA; 2010.
  • The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0; 2019. Available from: http://www.eucast.org. Accessed April 5, 2022.
  • Feliciello I, Chinali G. A modified alkaline lysis method for the preparation of highly purified plasmid DNA from. Escherichia Coli Anal Biochem. 1993;212(2):394–401.
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comp Biol. 2017;13(6):e1005595. doi:10.1371/journal.pcbi.1005595
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi:10.1093/bioinformatics/btu153
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Carattoli A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi:10.1128/AAC.02412-14
  • Malberg Tetzschner AM, Johnson JR, Johnston BD, et al. In silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of whole-genome sequencing data. J Clin Microbiol. 2020;58(10):e01269–20. doi:10.1128/JCM.01269-20
  • Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–1361. doi:10.1128/JCM.06094-11
  • Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–W21. doi:10.1093/nar/gkw387
  • de Jong A, van Hijum SA, Bijlsma JJ, et al. BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res. 2006;34(suppl_2):W273–W279. doi:10.1093/nar/gkl237
  • Mbanga J, Amoako DG, Abia AL, et al. Genomic insights of multidrug-resistant Escherichia coli from wastewater sources and their association with clinical pathogens in South Africa. Front Vet Sci. 2021;8:137. doi:10.3389/fvets.2021.636715
  • Zingali T, Reid CJ, Chapman TA, et al. Whole genome sequencing analysis of porcine faecal commensal Escherichia coli carrying class 1 integrons from sows and their offspring. Microorganisms. 2020;8(6):843. doi:10.3390/microorganisms8060843
  • Reid CJ, Blau K, Jechalke S, et al. Whole genome sequencing of Escherichia coli from store-bought produce. Front Microbiol. 2020;10:3050. doi:10.3389/fmicb.2019.03050
  • Paveenkittiporn W, Kamjumphol W, Ungcharoen R, et al. Whole-genome sequencing of clinically isolated carbapenem-resistant enterobacterales harboring mcr genes in Thailand, 2016–2019. Front Microbiol. 2021;11:3393. doi:10.3389/fmicb.2020.586368
  • Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi:10.1093/bioinformatics/btv421
  • Kearse M, Moir R, Wilson A, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi:10.1093/bioinformatics/bts199
  • Hadfield J, Croucher NJ, Goater RJ, et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics. 2018;34(2):292–293. doi:10.1093/bioinformatics/btx610
  • Mediavilla JR, Patrawalla A, Chen L, et al. Colistin-and carbapenem-resistant Escherichia coli harboring mcr-1 and bla NDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio. 2016;7(4):e01191–e01216. doi:10.1128/mBio.01191-16
  • Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482. doi:10.3934/microbiol.2018.3.482
  • León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, et al. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol. 2020;11:1669. doi:10.3389/fmicb.2020.01669
  • Cebrero-Cangueiro T, Labrador-Herrera G, Pascual Á, et al. Efficacy of fosfomycin and its combination with aminoglycosides in an experimental sepsis model by carbapenemase-producing Klebsiella pneumoniae clinical strains. Front Med. 2021;8:324. doi:10.3389/fmed.2021.615540
  • Morrill HJ, Pogue JM, Kaye KS, et al. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2015;2(2). doi:10.1093/ofid/ofv050
  • Espinal P, Nucleo E, Caltagirone M, et al. Genomics of Klebsiella pneumoniae ST16 producing NDM-1, CTX-M-15, and OXA-232. Clin Microbiol Infect. 2019;25(3):385.e1–385. e5. doi:10.1016/j.cmi.2018.11.004
  • Naseer U, Haldorsen B, Simonsen G, et al. Sporadic occurrence of CMY-2-producing multidrug-resistant Escherichia coli of ST-complexes 38 and 448, and ST131 in Norway. Clin Microbiol Infect. 2010;16(2):171–178. doi:10.1111/j.1469-0691.2009.02861.x
  • Chen SL, Ding Y, Apisarnthanarak A, et al. The higher prevalence of extended spectrum beta-lactamases among Escherichia coli ST131 in Southeast Asia is driven by expansion of a single, locally prevalent subclone. Sci Rep. 2019;9(1):1–14. doi:10.1038/s41598-018-37186-2
  • Ripabelli G, Sammarco ML, Scutellà M, et al. Carbapenem-resistant KPC- and TEM-producing Escherichia coli ST131 isolated from a hospitalized patient with urinary tract infection: first isolation in Molise Region, Central Italy, July 2018. Microb Drug Resist. 2020;26(1):38–45. doi:10.1089/mdr.2019.0085
  • Welker S, Boutin S, Miethke T, et al. Emergence of carbapenem-resistant ST131 Escherichia coli carrying blaOXA-244 in Germany, 2019 to 2020. Euro Surveill. 2020;25(46):2001815. doi:10.2807/1560-7917.ES.2020.25.46.2001815
  • Shin H, Kim Y, Han D, et al. Emergence of high level carbapenem and extensively drug resistant Escherichia coli ST746 producing NDM-5 in influent of wastewater treatment plant, Seoul, South Korea. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.645411
  • Hao Y, Shao C, Geng X, et al. Genotypic and phenotypic characterization of clinical Escherichia coli sequence type 405 carrying IncN2 plasmid harboring blaNDM-1. Front. Microbiol. 2019;10:788. doi:10.3389/fmicb.2019.00788
  • Gao H, Liu Y, Wang R, et al. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine. 2020;51:102599. doi:10.1016/j.ebiom.2019.102599
  • Chen Y-T, Lin A-C, Siu LK, et al. Sequence of closely related plasmids encoding blaNDM-1 in two unrelated Klebsiella pneumoniae isolates in Singapore. PLoS One. 2012;7(11):e48737. doi:10.1371/journal.pone.0048737
  • Tijet N, Richardson D, MacMullin G, et al. Characterization of multiple NDM-1-producing Enterobacteriaceae isolates from the same patient. Antimicrob Agents Chemother. 2015;59(6):3648–3651. doi:10.1128/AAC.04862-14
  • Poirel L, Lagrutta E, Taylor P, et al. Emergence of Metallo-β-Lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob Agents Chemother. 2010;54(11):4914–4916. doi:10.1128/AAC.00878-10
  • Netikul T, Sidjabat HE, Paterson DL, et al. Characterization of an IncN2-type bla NDM-1-carrying plasmid in Escherichia coli ST131 and Klebsiella pneumoniae ST11 and ST15 isolates in Thailand. J Antimicrob Chemother. 2014;69(11):3161–3163. doi:10.1093/jac/dku275
  • Sun F, Yin Z, Feng J, et al. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China. Frontiers in Microbiology. 2015;6:458. doi:10.3389/fmicb.2015.00458
  • Dolejska M, Villa L, Hasman H, et al. Characterization of IncN plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J Antimicrob Chemother. 2013;68(2):333–339. doi:10.1093/jac/dks387
  • Eikmeyer F, Hadiati A, Szczepanowski R, et al. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid. 2012;68(1):13–24. doi:10.1016/j.plasmid.2012.01.011
  • Yoon E-J, Kim JO, Yang JW, et al. The bla OXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems. J Antimicrob Chemother. 2017;72(10):2708–2714. doi:10.1093/jac/dkx205
  • Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother. 2011;55(9):4224–4229. doi:10.1128/AAC.00165-11
  • Grant MA, Weagant SD, Feng P. Glutamate decarboxylase genes as a prescreening marker for detection of pathogenic Escherichia coli groups. Appl Environ Microbiol. 2001;67(7):3110–3114. doi:10.1128/AEM.67.7.3110-3114.2001
  • Stone E, Campbell K, Grant I, et al. Understanding and exploiting phage–host interactions. Viruses. 2019;11(6):567. doi:10.3390/v11060567
  • Zhang J, He X, Shen S, et al. Effects of the newly isolated T4-like phage on transmission of plasmid-borne antibiotic resistance genes via generalized transduction. Viruses. 2021;13(10):2070. doi:10.3390/v13102070
  • Yousaf S, Parvaiz H, Khan S, et al. Prediction of novel bacteriocin from human intestinal microbiome and their growth modeling. Appl Microbiol Biotechnol. 2020;104(9):3869–3884. doi:10.1007/s00253-020-10493-3
  • Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020;8(5):639. doi:10.3390/microorganisms8050639
  • Casas V, Maloy S. The role of phage in the adaptation of bacteria to new environmental niches. In: Molecular Mechanisms of Microbial Evolution. Springer; 2018:267–306.
  • Campbell A. Phage evolution and speciation. In: The Bacteriophages. Springer; 1988:1–14.
  • Berne C, Ducret A, Hardy GG, et al. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbial Biofilms. 2015;3(4):163–199.
  • Prüß BM, Liu X, Hendrickson W, et al. FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett. 2001;197(1):91–97. doi:10.1016/S0378-1097(01)00092-1
  • Makui H, Roig E, Cole ST, et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol. 2000;35(5):1065–1078. doi:10.1046/j.1365-2958.2000.01774.x
  • Zheng G, Yan LZ, Vederas JC, et al. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol. 1999;181(23):7346–7355. doi:10.1128/JB.181.23.7346-7355.1999
  • Liu T, Ramesh A, Ma Z, et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol. 2007;3(1):60–68. doi:10.1038/nchembio844