146
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Impact of the ABCB1 Drug Resistance Gene on the Risk Factors of Patients with COVID-19 and Its Relationship with the Drugs Used

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2661-2669 | Published online: 24 May 2022

References

  • World Health Organization. WHO director-general’s opening remarks at the media briefing on COVID-19 - 11 March 2020. World Health Organization; 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed April 26, 2020.
  • Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Report. 2020;19:100682. doi:10.1016/j.genrep.2020.100682
  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. doi:10.1016/j.cell.2020.02.058
  • Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis -a review of current methods. Biosens Bioelectron. 2021;172:112752. doi:10.1016/j.bios.2020.112752
  • Zhu N, Zhang D, Wang W, et al.; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017
  • Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30(8):4381–4389. doi:10.1007/s00330-020-06801-0
  • Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–266. doi:10.1016/j.ijid.2020.01.009
  • Gardner W, States D, Bagley N. The coronavirus and the risks to the elderly in long-term care. J Aging Soc Policy. 2020;32(4–5):310–315. doi:10.1080/08959420.2020.1750543
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
  • Guan WJ, Liang WH, Zhao Y, et al.; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. doi:10.1183/13993003.00547-2020
  • Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–772. doi:10.1016/j.cmi.2020.04.012
  • Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol. 2020;214(5):1072–1077. doi:10.2214/AJR.20.22976
  • Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021;49(1):21–29. doi:10.1016/j.ajic.2020.07.011
  • Theagarajan LN. Group testing for COVID-19: how to stop worrying and test more. Cornell University; 2020.
  • Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–582. doi:10.7326/M20-0504
  • Naseem M, Akhund R, Arshad H, Ibrahim MT. Exploring the potential of artificial intelligence and machine learning to combat COVID-19 and existing opportunities for LMIC: a scoping review. J Prim Care Community Health. 2020;11:2150132720963634. doi:10.1177/2150132720963634
  • Arora G, Joshi J, Mandal RS, Shrivastava N, Virmani R, Sethi T. Artificial intelligence in surveillance, diagnosis, drug discovery and vaccine development against COVID-19. Pathogens. 2021;10(8):1048. doi:10.3390/pathogens10081048
  • Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi:10.1016/j.ijantimicag.2020.105949
  • Liu X. Transporter-mediated drug-drug interactions and their significance. Adv Exp Med Biol. 2019;1141:241–291. doi:10.1007/978-981-13-7647-4_5
  • Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20(5):793–807. doi:10.2174/138161282005140214165212
  • Pohl PC, Klafke GM, Júnior JR, Martins JR, da Silva Vaz I Jr, Masuda A. ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitol Res. 2012;111(6):2345–2351. doi:10.1007/s00436-012-3089-1
  • Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27(6–7):602–609. doi:10.1016/j.placenta.2005.05.007
  • Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci. 2010;21(1):29–53. doi:10.1515/revneuro.2010.21.1.29
  • Senarathna SM, Page-Sharp M, Crowe A. The interactions of p-glycoprotein with antimalarial drugs, including substrate affinity, inhibition and regulation. PLoS One. 2016;11(4):e0152677. doi:10.1371/journal.pone.0152677
  • Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genomic Med. 2020;5(1):35. doi:10.1038/s41525-020-00143-y
  • Olivas-Martínez A, Cárdenas-Fragoso JL, Jiménez JV, et al. In-hospital mortality from severe COVID-19 in a tertiary care center in Mexico city; causes of death, risk factors and the impact of hospital saturation. PLoS One. 2021;16(2):e0245772. doi:10.1371/journal.pone.0245772
  • Olarte Carrillo I, Ramos Peñafiel C, Miranda Peralta E, et al. Clinical significance of the ABCB1 and ABCG2 gene expression levels in acute lymphoblastic leukemia. Hematology. 2017;22(5):286–291. doi:10.1080/10245332.2016.1265780
  • World Health Organization. WHO coronavirus (COVID-19) dashboard. (s. f.). With vaccination data. Available from: https://covid19.who.int/. Accessed March 18, 2022.
  • Lemaitre F, Solas C, Grégoire M, et al.; French Society of Pharmacology, Therapeutics (SFPT), the International Association of Therapeutic Drug Monitoring, Clinical Toxicology (IATDMCT). Potential drug-drug interactions associated with drugs currently proposed for COVID-19 treatment in patients receiving other treatments. Fundam Clin Pharmacol. 2020;34(5):530–547. doi:10.1111/fcp.12586
  • Sun J, Deng X, Chen X, et al. Incidence of adverse drug reactions in COVID-19 patients in China: an active monitoring study by hospital pharmacovigilance system. Clin Pharmacol Ther. 2020;108(4):791–797. doi:10.1002/cpt.1866
  • Ramírez E, Urroz M, Rodríguez A, et al. Incidence of suspected serious adverse drug reactions in corona virus disease-19 patients detected by a pharmacovigilance program by laboratory signals in a tertiary hospital in Spain: cautionary data. Front Pharmacol. 2020;11:602841. doi:10.3389/fphar.2020.602841
  • Melo J, Duarte EC, Moraes MV, Fleck K, Silva A, Arrais P. Adverse drug reactions in patients with COVID-19 in Brazil: analysis of spontaneous notifications of the Brazilian pharmacovigilance system. Reações adversas a medicamentos em pacientes com COVID-19 no Brasil: análise das notificações espontâneas do sistema de farmacovigilância brasileiro. Cad Saude Publica. 2021;37(1):e00245820. doi:10.1590/0102-311X00245820
  • Biswas M, Roy DN. Potential clinically significant drug-drug interactions of hydroxychloroquine used in the treatment of COVID-19. Int J Clin Pract. 2021;75(11):e14710. doi:10.1111/ijcp.14710
  • Ibáñez S, Martínez O, Valenzuela F, Silva F, Valenzuela O. Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Clin Rheumatol. 2020;39(8):2461–2465. doi:10.1007/s10067-020-05202-4
  • Ebina-Shibuya R, Namkoong H, Horita N, et al. Hydroxychloroquine and chloroquine for treatment of coronavirus disease 19 (COVID-19): a systematic review and meta-analysis of randomized and non-randomized controlled trials. J Thorac Dis. 2021;13(1):202–212. doi:10.21037/jtd-20-2022
  • Celotto S, Veronese N, Barbagallo M, et al. An umbrella review of systematic reviews with meta-analyses evaluating positive and negative outcomes of hydroxychloroquine and chloroquine therapy. Int J Infect Dis. 2021;103:599–606. doi:10.1016/j.ijid.2020.12.018
  • Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19. Clin Pharmacol Ther. 2020;108(2):201–211. doi:10.1002/cpt.1857
  • Fantini J, Chahinian H, Yahi N. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: what molecular dynamics studies of virus-host interactions reveal. Int J Antimicrob Agents. 2020;56(2):106020. doi:10.1016/j.ijantimicag.2020.106020
  • Singh AK, Singh R. Is metformin ahead in the race as a repurposed host-directed therapy for patients with diabetes and COVID-19? Diabetes Res Clin Pract. 2020;165:108268. doi:10.1016/j.diabres.2020.108268
  • El-Arabey AA, Abdalla M. Metformin and COVID-19: a novel deal of an old drug. J Med Virol. 2020;92(11):2293–2294. doi:10.1002/jmv.25958
  • Gao Y, Liu T, Zhong W, et al. Risk of metformin in patients with type 2 diabetes with COVID-19: a preliminary retrospective report. Clin Transl Sci. 2020;13(6):1055–1059. doi:10.1111/cts.12897
  • Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: findings from the CORONADO study and other recent reports. Diabetes Metab. 2020;46(4):265–271. doi:10.1016/j.diabet.2020.05.008
  • Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–833. doi:10.1016/S2213-8587(20)30271-0
  • Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol. 2014;5:273. doi:10.3389/fphar.2014.00273
  • Yan R, Luo J, He X, Li S. Association between ABC family variants rs1800977, rs4149313, and rs1128503 and susceptibility to type 2 diabetes in a Chinese Han population. J Int Med Res. 2020;48(8):300060520941347. doi:10.1177/0300060520941347
  • Hammad AM, Alasmari F, Sari Y, Scott Hall F, Tiwari AK. Alcohol and cocaine exposure modulates ABCB1 and ABCG2 transporters in male alcohol-preferring rats. Mol Neurobiol. 2019;56(3):1921–1932. doi:10.1007/s12035-018-1153-2
  • Parissenti AM, Gannon BR, Villeneuve DJ, Kirwan-rhude AF, Chadderton A, Glück S. Lack of modulation of MDR1 gene expression by dominant inhibition of cAMP-dependent protein kinase in doxorubicin-resistant mcf-7 breast cancer cells. Int J Cancer. 1999;82(6):893–900.
  • Ramos-Peñafiel C, Olarte-Carrillo I, Cerón-Maldonado R, et al. Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene. J Transl Med. 2018;16(1):245. doi:10.1186/s12967-018-1620-6
  • Delou J, Vignal GM, Índio-do-Brasil V, et al. Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis. Breast Cancer. 2017;9:415–428. doi:10.2147/BCTT.S131284
  • Litviakov NV, Cherdyntseva NV, Tsyganov MM, et al. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget. 2016;7(7):7829–7841. doi:10.18632/oncotarget.6953