165
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

GLO1 Contributes to the Drug Resistance of Escherichia coli Through Inducing PER Type of Extended-Spectrum β-Lactamases

, , , , &
Pages 1573-1586 | Published online: 05 Apr 2022

References

  • Tabak Y, Merchant S, Ye G, et al. Incremental clinical and economic burden of suspected respiratory infections due to multi-drug-resistant Pseudomonas aeruginosa in the United States. J Hosp Infect. 2019;103(2):134–141. doi:10.1016/j.jhin.2019.06.005
  • Roth N, Käsbohrer A, Mayrhofer S, Zitz U, Hofacre C, Domig KJ The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: a global overview. Poult Sci. 2019;98(4):1791–1804. doi:10.3382/ps/pey539
  • Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973–1987. doi:10.1016/S0140-6736(20)31142-9
  • MacIntyre CR, Wang Q Physical distancing, face masks, and eye protection for prevention of COVID-19. Lancet. 2020;395(10242):1950–1951. doi:10.1016/S0140-6736(20)31183-1
  • Dunn SJ, Connor C, McNally A The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: the complexity of clones and plasmids. Curr Opin Microbiol. 2019;51:51–56. doi:10.1016/j.mib.2019.06.004
  • Wang M, Wang W, Niu Y, et al. A clinical extensively-drug resistant (XDR) Escherichia coli and role of its β-lactamase genes. Front Microbiol. 2020;11.
  • Wang M, Ma B, Ni Y, et al. Restoration of the antibiotic susceptibility of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases Escherichia coli through combination with Chelerythrine. Microb Drug Resist. 2021;27(3):337–341. doi:10.1089/mdr.2020.0044
  • Dsani E, Afari EA, Danso-Appiah A, Kenu E, Kaburi BB, Egyir B Antimicrobial resistance and molecular detection of extended spectrum β-lactamase producing Escherichia coli isolates from raw meat in Greater Accra region, Ghana. BMC Microbiol. 2020;20(1):1–8. doi:10.1186/s12866-020-01935-z
  • Patil S, Chen X, Lian M, Wen F Phenotypic and genotypic characterization of multi-drug-resistant Escherichia coli isolates harboring blaCTX-M group extended-spectrum β-lactamases recovered from pediatric patients in Shenzhen, southern China. Infect Drug Resist. 2019;12:1325. doi:10.2147/IDR.S199861
  • Koirala S, Khadka S, Sapkota S, et al. Prevalence of CTX-M β-lactamases producing multidrug resistant Escherichia coli and Klebsiella pneumoniae among patients attending Bir Hospital, Nepal. BioMed Res Int. 2021;2021. 1–11 doi:10.1155/2021/9958294
  • Chirgadze YN, Boshkova EA, Battaile KP, et al. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family. J Biomol Struct Dyn. 2018;36(2):376–386. doi:10.1080/07391102.2016.1278038
  • Inoue Y, Maeta K, Nomura W. Glyoxalase system in yeasts: structure, function, and physiology. Paper presented at: Seminars in cell & developmental biology; 2011.
  • Goo Y-K, Yamagishi J, Ueno A, et al. Characterization of Toxoplasma gondii glyoxalase 1 and evaluation of inhibitory effects of curcumin on the enzyme and parasite cultures. Parasites Vectors. 2015;8(1):1–8. doi:10.1186/s13071-015-1268-5
  • Kargatov AM, Boshkova EA, Chirgadze YN Novel approach for structural identification of protein family: glyoxalase I. J Biomol Struct Dyn. 2018;36(10):2699–2712. doi:10.1080/07391102.2017.1367330
  • Bythell‐Douglas R, Suttisansanee U, Flematti GR, et al. The Crystal Structure of a Homodimeric Pseudomonas Glyoxalase I Enzyme Reveals Asymmetric Metallation Commensurate with Half‐of‐Sites Activity. Chem Eur J. 2015;21(2):541–544. doi:10.1002/chem.201405402
  • Ma H, Lai B, Jin Y, Tian C, Liu J, Wang K Proteomics and metabolomics analysis reveal potential mechanism of extended-spectrum β-lactamase production in Escherichia coli. RSC Adv. 2020;10(45):26862–26873. doi:10.1039/D0RA04250A
  • Poirel L, Madec J-Y, Lupo A, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6(4):6.4.14.
  • Kim DG, Kim K, Bae SH, et al. Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea. Poult Sci. 2021:101571. 101 doi:10.1016/j.psj.2021.101571
  • Wang Y, Zhou J, Li X, et al. Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J Glob Antimicrob Resist. 2020;22:726–732. doi:10.1016/j.jgar.2020.06.028
  • Paitan Y. Current trends in antimicrobial resistance of Escherichia coli. In: Escherichia Coli, a Versatile Pathogen. 2018;181–211.
  • Masoud SM, El-Baky A, Mahmoud R, Aly SA, Ibrahem RA Co-existence of certain ESBLs, MBLs and plasmid mediated quinolone resistance genes among MDR E. coli isolated from different clinical specimens in Egypt. Antibiotics. 2021;10(7):835. doi:10.3390/antibiotics10070835
  • Oshiro S, Tada T, Watanabe S, et al. Emergence and spread of carbapenem-resistant and aminoglycoside-panresistant Enterobacter cloacae complex isolates coproducing NDM-type metallo-β-lactamase and 16S rRNA methylase in Myanmar. Msphere. 2020;5(2):e00054–00020. doi:10.1128/mSphere.00054-20
  • Freitag C, Michael GB, Kadlec K, Hassel M, Schwarz S Detection of plasmid-borne extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from bovine mastitis. Vet Microbiol. 2017;200:151–156. doi:10.1016/j.vetmic.2016.08.010
  • Su Y, Yu C-Y, Tsai Y, Wang S-H, Lee C, Chu C Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. J Microbiol Immunol Infect. 2016;49(6):892–901. doi:10.1016/j.jmii.2014.10.003
  • Tooke CL, Hinchliffe P, Bragginton EC, et al. β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol. 2019;431(18):3472–3500. doi:10.1016/j.jmb.2019.04.002
  • Abhyankar W, Wen J, Swarge B, et al. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol. 2019;81:89–96. doi:10.1016/j.fm.2018.03.006
  • El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M Quantitative proteomics of the 2016 WHO Neisseria gonorrhoeae reference strains surveys vaccine candidates and antimicrobial resistance Determinants. Mol Cell Proteom. 2019;18(1):127–150. doi:10.1074/mcp.RA118.001125
  • Li W, Wang G, Zhang S, et al. An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. J Proteom. 2019;194:148–159. doi:10.1016/j.jprot.2018.11.022
  • Rêgo AM, da Silva DA, Ferreira NV, et al. Metabolic profiles of multidrug resistant and extensively drug resistant Mycobacterium tuberculosis unveiled by metabolomics. Tuberculosis. 2021;126:102043. doi:10.1016/j.tube.2020.102043
  • Panter F, Bader CD, Müller R Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci. 2021;12(17):5994–6010. doi:10.1039/D0SC06919A
  • Valentin L, Sharp H, Hille K, et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Intl J Med Microbiol. 2014;304(7):805–816. doi:10.1016/j.ijmm.2014.07.015
  • van Hout D, Verschuuren TD, Bruijning-Verhagen PC, et al. Extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli isolates causing bacteremia in the Netherlands (2014–2016) differ in clonal distribution, antimicrobial resistance gene and virulence gene content. PLoS One. 2020;15(1):e0227604. doi:10.1371/journal.pone.0227604
  • Verschuuren T, van Hout D, Arredondo-Alonso S, et al. Comparative genomics of ESBL-producing Escherichia coli (ESBL-Ec) reveals a similar distribution of the 10 most prevalent ESBL-Ec clones and ESBL genes among human community faecal and extra-intestinal infection isolates in the Netherlands (2014–17). J Antimicrob Chemother. 2021;76(4):901–908. doi:10.1093/jac/dkaa534
  • Nüesch-Inderbinen M, Hächler H, Kayser F Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15(5):398–402. doi:10.1007/BF01690097
  • Labia R, Morand A Interaction of cefdinir with beta-lactamases. Drugs Exp Clin Res. 1994;20(2):43–48.
  • Karim A, Poirel L, Nagarajan S, Nordmann P Plasmid-mediated extended-spectrum β-lactamase (CTX-M-3 like) from India and gene association with insertion sequence IS Ecp1. FEMS Microbiol Lett. 2001;201(2):237–241. doi:10.1111/j.1574-6968.2001.tb10762.x
  • Ruggiero M, Papp-Wallace KM, Taracila MA, et al. Exploring the landscape of diazabicyclooctane (DBO) inhibition: avibactam inactivation of PER-2 β-lactamase. Antimicrob Agents Chemother. 2017;61(6):e02476–02416. doi:10.1128/AAC.02476-16
  • Distler MG, Palmer AA Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Front Genet. 2012;3:250. doi:10.3389/fgene.2012.00250
  • Jang S, Kwon DM, Kwon K, Park C Generation and characterization of mouse knockout for glyoxalase 1. Biochem Biophys Res Communications. 2017;490(2):460–465. doi:10.1016/j.bbrc.2017.06.063
  • Suttisansanee U, Lau K, Lagishetty S, et al. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum. J Biol Chem. 2011;286(44):38367–38374. doi:10.1074/jbc.M111.251603
  • Filippova EV, Weigand S, Kiryukhina O, Wolfe AJ, Anderson WF Analysis of crystalline and solution states of ligand-free spermidine N-acetyltransferase (SpeG) from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 2019;75(6):545–553. doi:10.1107/S2059798319006545
  • Le VTB, Dang J, Lim EQ, Kuhn ML Criticality of a conserved tyrosine residue in the SpeG protein from Escherichia coli. Protein Sci. 2021;30(6):1264–1269. doi:10.1002/pro.4078