365
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Carbapenem Resistant Pseudomonas aeruginosa Infections in Elderly Patients: Antimicrobial Resistance Profiles, Risk Factors and Impact on Clinical Outcomes

ORCID Icon, , , , , ORCID Icon & show all
Pages 2301-2314 | Published online: 29 Apr 2022

References

  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi:10.1128/cmr.00040-09
  • HuF, Guo Y, Zhu D, et al. CHINET surveillance of bacterial resistance: results of 2020. Chin J Infect Chemother. 2021;21(4):377–387. doi:10.16718/j.1009-7708.2021.04.001. Chinese.
  • Strateva T, Yordanov D.Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(9):1133–1148. doi:10.1099/jmm.0.009142-0
  • Sader HS, Castanheira M, Duncan LR, et al. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States Medical Centers stratified by infection type: results from the International Network for Optimal Resistance Monitoring (INFORM) surveillance program, 2015–2016. Diagn Microbiol Infect Dis. 2018;92(1):69–74. doi:10.1016/j.diagmicrobio.2018.04.012
  • Walkty A, Lagace-Wiens P, Adam H, et al. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: results of the Canadian Ward Surveillance Study (CANWARD), 2008–2015. Diagn Microbiol Infect Dis. 2017;87(1):60–63. doi:10.1016/j.diagmicrobio.2016.10.003
  • Lee YL, Ko WC, Hsueh PR. Geographic patterns of carbapenem-resistant Pseudomonas aeruginosa in the Asia-Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2015–2019. Antimicrob Agents CH. 2021;AAC0200021. doi:10.1177/1747493018778713
  • Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:1–13. doi:10.3389/fmicb.2011.00065
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi:10.1016/s1473-3099(17)30753-3
  • Lodise TP, Bassetti M, Ferrer R, et al. All-cause mortality rates in adults with carbapenem-resistant Gram-negative bacterial infections: a comprehensive review of pathogen-focused, prospective, randomized, interventional clinical studies. Expert Rev Anti Infect Ther. 2021;12:1–13. doi:10.1080/14787210.2022.2020099
  • Hu YY, Cao JM, Yang Q, et al. Risk factors for carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg Infect Dis. 2019;25(10):1861–1867. doi:10.3201/eid2510.181699
  • Chen SZ, Xu JJ, Xiao TT, et al. Clinical characteristics and prognostic risk factors analysis of carbapenem-resistant organism in the department of hematology. Chin J Hematol. 2021;42(7):563–569. doi:10.3760/cma.j.issn.0253-2727.2021.07.006. Chinese.
  • Freire MP, Camargo CH, Yamada AY, et al. Critical points and potential pitfalls of outbreak of IMP-1-producing carbapenem-resistant Pseudomonas aeruginosa among kidney transplant recipients: a case-control study. J Hosp Infect. 2021;115:83–92. doi:10.1016/j.jhin.2021.05.006
  • Kang JS, Moon C, SJ Mun, et al. Antimicrobial susceptibility trends and risk factors for antimicrobial resistance in Pseudomonas aeruginosa bacteremia: 12-year experience in a tertiary hospital in Korea. J Korean Med Sci. 2021;36(43):e273. doi:10.3346/jkms.2021.36.e273
  • Ministry of Health of the People’s Republic of China. Diagnostic criteria for nosocomial infection (for trial implementation). Natl Med J China. 2001;5:61–67.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2020.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–271. doi:10.1111/j.1469-0691.2011.03570.x
  • Jean SS, Lee YL, Liu PY, et al. Multicenter surveillance of antimicrobial susceptibilities and resistance mechanisms among Enterobacterales species and non-fermenting Gram-negative bacteria from different infection sources in Taiwan from 2016 to 2018. J Microbiol Immunol Infect. 2021;3:1684–1782. doi:10.1016/j.jmii.2021.07.015
  • Morrow BJ, Pillar CM, Deane J, et al. Activities of carbapenem and comparator agents against contemporary US Pseudomonas aeruginosa isolates from the CAPITAL surveillance program. Diagn Microbiol Infect Dis. 2013;75(4):412–416. doi:10.1016/j.diagmicrobio.2012.12.012
  • Zhang Y, Li Y, Zeng J, et al. Risk Factors for Mortality of Inpatients with Pseudomonas aeruginosa Bacteremia in China: Impact ofResistance Profile in the Mortality. Infect Drug Resist. 2020;12(13):4115–4123. doi:10.2147/IDR.S268744
  • Lin KY, Lauderdale TL, Wang JT, et al. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect. 2016;49(1):52–59. doi:10.1016/j.jmii.2014.01.005
  • Onguru P, Erbay A, Bodur H, et al. Imipenem-resistant Pseudomonas aeruginosa: risk factors for nosocomial infections. J Korean Med Sci. 2008;23(6):982–987. doi:10.3346/jkms.2008.23.6.982
  • Riou M, Carbonnelle S, Avrain L, et al. In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents. 2010;36:513–522. doi:10.1016/j.ijantimicag.2010.08.005
  • Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci. 2000;97(4):1938–1943. doi:10.1073/pnas.97.4.1938
  • da Silva NCZ, da Rocha JA, Do Valle FM, et al. The impact of ageing on the incidence and mortality rate of bloodstream infection: a hospital-based case-cohort study in a tertiary public hospital of Brazil. Trop Med Int Health. 2021;26(10):1276–1284. doi:10.1111/tmi.13650
  • Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–632. doi:10.1016/j.ccc.2013.03.016
  • Zou Y, Lian J, Di Y, et al. The quick loss of carbapenem susceptibility in Pseudomonas aeruginosa at intensive care units. Int J Clin Pharm. 2018;40(1):175–182. doi:10.1007/s11096-017-0524-5
  • Hyle EP, Gasink LB, Linkin DR, et al. Use of different thresholds of prior antimicrobial use in defining exposure: impact on the association between antimicrobial use and antimicrobial resistance. J Infect. 2007;55(5):414–418. doi:10.1016/j.jinf.2007.07.005
  • Hirota K, Yoneyama T, Sakamoto M, et al. High prevalence of Pseudomonas aeruginosa from oropharyngeal biofilm in patients with cerebrovascular infarction and dysphagia. Chest. 2010;138(1):237–238. doi:10.1378/chest.10-0240
  • Okeng’o K, Chillo P, Gray WK, et al. Early mortality and associated factors among patients with stroke admitted to a large teaching hospital in Tanzania. J Stroke Cerebrovasc Dis. 2016;26(4):871–878. doi:10.1016/j.jstrokecerebrovasdis.2016.10.037
  • Leihof RF, Ethelberg S, Nielsen KL, et al. Nosocomial urinary tract infection and risk of bacteraemia in elderly patients: urinary catheter, clinical factors and bacterial species. Infect Dis. 2019;51(7):547–549. doi:10.1080/23744235.2019.1599135
  • Tomczyk S, Zanichelli V, Grayson ML, et al. Control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in healthcare facilities: a Systematic Review and Reanalysis of Quasi-experimental Studies. Clin Infect Dis. 2019;68(5):873–884. doi:10.1093/cid/ciy752
  • Kitagawa K, Shigemura K, Yamamichi F, et al. Bacteremia complicating urinary tract infection by Pseudomonas aeruginosa: Mortality risk factors. Int J Urol. 2019;26(3):358–362. doi:10.1111/iju.13872
  • Horasan ES, Dağ A, Ersoz G, et al. Surgical site infections and mortality in elderly patients. Med Mal Infect. 2013;43(10):417–422. doi:10.1016/j.medmal.2013.07.009
  • Folic MM, Djordjevic Z, Folic N, et al. Epidemiology and risk factors for healthcare-associated infections caused by Pseudomonas aeruginosa. J Chemother. 2020;33(5):294–301. doi:10.1080/1120009x.2020.1823679
  • Tsao LH, Hsin CY, Liu HY, et al. Risk factors for healthcare-associated infection caused by carbapenem-resistant. Pseudomonas aeruginosa. J Microbiol Immunol Infect. 2018;51(3):359–366. doi:10.1016/j.jmii.2017.08.015
  • Jia H, Li L, Li W, et al. Impact of healthcare-associated infections on length of stay: a Study in 68 Hospitals in China. Biomed Res Int. 2019;2019:2590563. doi:10.1155/2019/2590563
  • Bourgi J, Said JM, Yaakoub C, et al. Bacterial infection profile and predictors among patients admitted to a burn care center: a retrospective study. Burns. 2020;46(8):1968–1976. doi:10.1016/j.burns.2020.05.004
  • Kang CI, Kim SH, Park WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob Agents Chemother. 2005;49(2):760–766. doi:10.1128/aac.49.2.760-766.2005
  • Tam VH, Gamez EA, Weston JS, et al. Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis. 2008;46(6):862–867. doi:10.1086/528712
  • Maeda M, Ozaki T, Yasuoka S, et al. [Role of alveolar macrophages and neutrophils in the defense system against infection of Pseudomonas aeruginosa in the respiratory tract and the effect of derivative of muramyl dipeptide]. Nihon Kyobu Shikkan Gakkai Zasshi. 1990;28(1):135–142. Japanese.
  • Kamoshida G, Tansho-Nagakawa S, Kikuchi-Ueda T, et al. A novel bacterialtransport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8. J Leukoc Biol. 2016;100(6):1405–1412. doi:10.1189/jlb.4AB0116-023RR