242
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Biological and Clinical Attributes of Sporothrix globosa, a Causative Agent of Sporotrichosis

, , ORCID Icon, , & ORCID Icon
Pages 2067-2090 | Published online: 22 Apr 2022

References

  • Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, et al. Sporotrichosis between 1898 and 2017: the evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol. 2018;56(suppl_1):126–143. doi:10.1093/mmy/myx103
  • Mora-Montes HM, Dantas Ada S, Trujillo-Esquivel E, de Souza Baptista AR, Lopes-Bezerra LM. Current progress in the biology of members of the Sporothrix schenckii complex following the genomic era. FEMS Yeast Res. 2015;15(6):fov065. doi:10.1093/femsyr/fov065
  • López-Romero E, Reyes-Montes Mdel R, Pérez-Torres A, et al. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol. 2011;6(1):85–102. doi:10.2217/fmb.10.157
  • Rossow JA, Queiroz-Telles F, Caceres DH, et al. A one health approach to combatting Sporothrix brasiliensis: narrative review of an emerging zoonotic fungal pathogen in South America. J Fungi. 2020;6(4):247. doi:10.3390/jof6040247
  • Han HS, Kano R. Feline sporotrichosis in Asia. Braz J Microbiol. 2020;52:125–134. doi:10.1007/s42770-020-00274-5
  • Rodrigues AM, Della Terra PP, Gremião ID, Pereira SA, Orofino-Costa R, de Camargo ZP. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia. 2020;185(5):813–842. doi:10.1007/s11046-020-00425-0
  • de Beer ZW, Duong TA, Wingfield MJ. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud Mycol. 2016;83:165–191. doi:10.1016/j.simyco.2016.07.001
  • Rodrigues AM, de Hoog GS, de Camargo ZP. Sporothrix species causing outbreaks in animals and humans driven by animal-animal transmission. PLoS Pathog. 2016;12(7):e1005638. doi:10.1371/journal.ppat.1005638
  • Etchecopaz AN, Lanza N, Toscanini MA, et al. Sporotrichosis caused by Sporothrix brasiliensis in Argentina: case report, molecular identification and in vitro susceptibility pattern to antifungal drugs. J Mycol Med. 2020;30(1):100908. doi:10.1016/j.mycmed.2019.100908
  • Gremião ID, Miranda LH, Reis EG, Rodrigues AM, Pereira SA. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathog. 2017;13(1):e1006077. doi:10.1371/journal.ppat.1006077
  • Moussa TAA, Kadasa NMS, Al Zahrani HS, et al. Origin and distribution of Sporothrix globosa causing sapronoses in Asia. J Med Microbiol. 2017;66(5):560–569. doi:10.1099/jmm.0.000451
  • Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S. Global epidemiology of sporotrichosis. Med Mycol. 2015;53(1):3–14. doi:10.1093/mmy/myu062
  • Camacho E, León-Navarro I, Rodríguez-Brito S, Mendoza M, Niño-Vega GA. Molecular epidemiology of human sporotrichosis in Venezuela reveals high frequency of Sporothrix globosa. BMC Infect Dis. 2015;15:94. doi:10.1186/s12879-015-0839-6
  • Zhou X, Rodrigues AM, Feng P, de Hoog GS. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers. 2014;66(1):153–165.
  • Zhang Y, Hagen F, Stielow B, et al. Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Persoonia. 2015;35:1–20. doi:10.3767/003158515X687416
  • Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007;45(10):3198–3206. doi:10.1128/JCM.00808-07
  • Madrid H, Cano J, Gene J, Bonifaz A, Toriello C, Guarro J. Sporothrix globosa, a pathogenic fungus with widespread geographical distribution. Rev Iberoam Micol. 2009;26(3):218–222. doi:10.1016/j.riam.2009.02.005
  • Zhao L, Cui Y, Zhen Y, et al. Genetic variation of Sporothrix globosa isolates from diverse geographic and clinical origins in China. Emerg Microbes Infect. 2017;6(10):e88. doi:10.1038/emi.2017.75
  • New D, Beukers AG, Kidd SE, et al. Identification of multiple species and subpopulations among Australian clinical Sporothrix isolates using whole genome sequencing. Med Mycol. 2019;57(7):905–908. doi:10.1093/mmy/myy126
  • Rudramurthy SM, Shankarnarayan SA, Hemashetter BM, et al. Phenotypic and molecular characterisation of Sporothrix globosa of diverse origin from India. Braz J Microbiol. 2021;52(1):91–100. doi:10.1007/s42770-020-00346-6
  • Cruz R, Vieille P, Oschilewski D. Aislamiento ambiental de Sporothrix globosa en relación a un caso de esporotricosis linfo-cutánea. Rev chil infectol. 2012;29:401–405. doi:10.4067/S0716-10182012000400006
  • Rodrigues AM, de Hoog S, de Camargo ZP. Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol. 2013;51(4):405–412. doi:10.3109/13693786.2012.719648
  • de Oliveira MM, de Almeida-paes R, de Medeiros Muniz M, de Lima Barros MB, Galhardo MC, Zancope-Oliveira RM. Sporotrichosis caused by Sporothrix globosa in Rio De Janeiro, brazil: case report. Mycopathologia. 2010;169(5):359–363. doi:10.1007/s11046-010-9276-7
  • Huang L, Gao W, Giosa D, et al. Whole-genome sequencing and in silico analysis of two strains of Sporothrix globosa. Genome Biol Evol. 2016;8(11):3292–3296. doi:10.1093/gbe/evw230
  • Fernandes KSS, Mathews HL, Bezerra LML. Differences in virulence of Sporothrix schenckii conidia related to culture conditions and cell-wall components. J Med Microbiol. 1999;48(2):195–203. doi:10.1099/00222615-48-2-195
  • Martinez-Alvarez JA, Perez-Garcia LA, Mellado-Mojica E, et al. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 2017;8:843. doi:10.3389/fmicb.2017.00843
  • Garcia-Carnero LC, Clavijo-Giraldo DM, Gomez-Gaviria M, et al. Early virulence predictors during the Candida species-Galleria mellonella Interaction. J Fungi. 2020;6(3):152. doi:10.3390/jof6030152
  • Teixeira MM, de Almeida LG, Kubitschek-Barreira P, et al. Comparative genomics of the major fungal agents of human and animal sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics. 2014;15:943. doi:10.1186/1471-2164-15-943
  • D’Alessandro E, Giosa D, Huang L, et al. Draft genome sequence of the dimorphic fungus Sporothrix pallida, a nonpathogenic species belonging to Sporothrix, a genus containing agents of human and feline sporotrichosis. Genome Announc. 2016;4(2):e00184–00116. doi:10.1128/genomeA.00184-16
  • Prakash H, Karuppiah P, A Al-Dhabi N, et al. Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants. Future Microbiol. 2020;15:1465–1481. doi:10.2217/fmb-2019-0302
  • Mesa-Arango AC, Del Rocío Reyes-Montes M, Pérez-Mejía A, et al. Phenotyping and genotyping of Sporothrix schenckii isolates according to geographic origin and clinical form of sporotrichosis. J Clin Microbiol. 2002;40(8):3004–3011. doi:10.1128/JCM.40.8.3004-3011.2002
  • Lozoya-Perez NE, Clavijo-Giraldo DM, Martinez-Duncker I, et al. Influences of the culturing media in the virulence and cell wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. J Fungi. 2020;6(4):323. doi:10.3390/jof6040323
  • Rodrigues AM, de Hoog G, Zhang Y, de Camargo ZP. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species. Emerg Microbes Infect. 2014;3(5):e32. doi:10.1038/emi.2014.33
  • Kano R, Anzawa K, Mochizuki T, et al. Sporothrix schenckii (sensu strict S. globosa) mating type 1-2 (MAT1-2) gene. J Dermatol. 2013;40(9):726–730. doi:10.1111/1346-8138.12226
  • Rangel-Gamboa L, Martínez-Hernandez F, Maravilla P, Arenas-Guzmán R, Flisser A. Update of phylogenetic and genetic diversity of Sporothrix schenckii sensu lato. Med Mycol. 2016;54(3):248–255. doi:10.1093/mmy/myv096
  • de Carvalho JA, Beale MA, Hagen F, et al. Trends in the molecular epidemiology and population genetics of emerging Sporothrix species. Stud Mycol. 2021;100:100129. doi:10.1016/j.simyco.2021.100129
  • Lopes-Bezerra LM, Walker LA, Nino-Vega G, et al. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Negl Trop Dis. 2018;12(3):e0006169. doi:10.1371/journal.pntd.0006169
  • Villalobos-Duno HL, Barreto LA, Alvarez-Aular Á, et al. Comparison of cell wall polysaccharide composition and structure between strains of Sporothrix schenckii and Sporothrix brasiliensis. Front Microbiol. 2021;12:726958. doi:10.3389/fmicb.2021.726958
  • Lozoya-Perez NE, Casas-Flores S, Martinez-Alvarez JA, et al. Generation of Sporothrix schenckii mutants expressing the green fluorescent protein suitable for the study of host-fungus interactions. Fungal Biol. 2018;122(10):1023–1030. doi:10.1016/j.funbio.2018.07.004
  • Clavijo-Giraldo DM, Matinez-Alvarez JA, Lopes-Bezerra LM, et al. Analysis of Sporothrix schenckii sensu stricto and Sporothrix brasiliensis virulence in Galleria mellonella. J Microbiol Methods. 2016;122:73–77. doi:10.1016/j.mimet.2016.01.014
  • Silva-Bailão MG, de Sousa Lima P, Evangelista de Oliveira MM, et al. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect. 2020;23. doi:10.1016/j.micinf.2020.09.008
  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv113. doi:10.1126/scitranslmed.3004404
  • Casadevall A, Pirofski LA, Fischetti VA. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun. 1999;67(8):3703–3713. doi:10.1128/IAI.67.8.3703-3713.1999
  • Garcia-Carnero LC, Perez-Garcia LA, Martinez-Alvarez JA, Reyes-Martinez JE, Mora-Montes HM. Current trends to control fungal pathogens: exploiting our knowledge in the host-pathogen interaction. Infect Drug Resist. 2018;11:903–913. doi:10.2147/IDR.S170337
  • Arrillaga-Moncrieff I, Capilla J, Mayayo E, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15(7):651–655. doi:10.1111/j.1469-0691.2009.02824.x
  • Cruz Choappa R, Pérez Gaete S, Rodríguez Badilla V, Vieille Oyarzo P, Opazo Sanchez H. Virulence of Sporothrix globosa in murine models. Rev Argent Microbiol. 2016;48(3):196–199. doi:10.1016/j.ram.2016.04.007
  • Della Terra PP, Rodrigues AM, Fernandes GF, Nishikaku AS, Burger E, de Camargo ZP. Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis. PLoS Negl Trop Dis. 2017;11(8):e0005903–e0005903. doi:10.1371/journal.pntd.0005903
  • Gow NA, Netea MG, Munro CA, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196(10):1565–1571. doi:10.1086/523110
  • Csermely P, Schnaider T, So″ti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. a comprehensive review. Pharmacol Ther. 1998;79(2):129–168. doi:10.1016/s0163-7258(98)00013-8
  • Rodriguez-Caban J, Gonzalez-Velazquez W, Perez-Sanchez L, Gonzalez-Mendez R, Rodriguez-del Valle N. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study. BMC Microbiol. 2011;11:162. doi:10.1186/1471-2180-11-162
  • Zhang Z, Hou B, Wu YZ, Wang Y, Liu X, Han S. Two‑component histidine kinase DRK1 is required for pathogenesis in Sporothrix schenckii. Mol Med Rep. 2018;17(1):721–728. doi:10.3892/mmr.2017.8005
  • Hou B, Zhang Z, Zheng F, Liu X. Molecular cloning, characterization and differential expression of DRK1 in Sporothrix schenckii. Int J Mol Med. 2013;31(1):99–104. doi:10.3892/ijmm.2012.1193
  • Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev. 2000;13(4):708–717. doi:10.1128/CMR.13.4.708
  • Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun. 2000;68(6):3696–3703. doi:10.1128/IAI.68.6.3696-3703.2000
  • Mario DA, Santos RC, Denardi LB, Vaucher Rde A, Santurio JM, Alves SH. Interference of melanin in the susceptibility profile of Sporothrix species to amphotericin B. Rev Iberoam Micol. 2016;33(1):21–25. doi:10.1016/j.riam.2015.03.001
  • Aquino-Piñero E, Rodríguez-del Valle N. Characterization of a protein kinase C gene in Sporothrix schenckii and its expression during the yeast-to-mycelium transition. Med Mycol. 2002;40(2):185–199. doi:10.1080/mmy.40.2.185.199
  • Serrano S, Valle N. Calcium uptake and efflux during the yeast to mycelium transition in Sporothrix schenckii. Mycopathologia. 1990;112(1):1–9. doi:10.1007/BF01795170
  • Martinez-Alvarez JA, Garcia-Carnero LC, Kubitschek-Barreira PH, et al. Analysis of some immunogenic properties of the recombinant Sporothrix schenckii Gp70 expressed in Escherichia coli. Future Microbiol. 2019;14:397–410. doi:10.2217/fmb-2018-0295
  • Ruiz-Baca E, Toriello C, Perez-Torres A, Sabanero-Lopez M, Villagomez-Castro JC, Lopez-Romero E. Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix schenckii involved in fungal adherence to dermal extracellular matrix. Med Mycol. 2009;47(2):185–196. doi:10.1080/13693780802165789
  • Rodrigues AM, Kubitschek-Barreira PH, Fernandes GF, de Almeida SR, Lopes-Bezerra LM, de Camargo ZP. Immunoproteomic analysis reveals a convergent humoral response signature in the Sporothrix schenckii complex. J Proteomics. 2015;115:8–22. doi:10.1016/j.jprot.2014.11.013
  • de Almeida JRF, Jannuzzi GP, Kaihami GH, Breda LCD, Ferreira KS, de Almeida SR. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Sci Rep. 2018;8(1):4192. doi:10.1038/s41598-018-22709-8
  • Lozoya-Pérez NE, García-Carnero LC, Martínez-álvarez JA, Martínez-Duncker I, Mora-Montes HM. Tenebrio molitor as an alternative model to analyze the Sporothrix species virulence. Infect Drug Resist. 2021;14:2059–2072. doi:10.2147/IDR.S312553
  • de Almeida JR, Santiago KL, Kaihami GH, Maranhão AQ, de Macedo Brígido M, de Almeida SR. The efficacy of humanized antibody against the Sporothrix antigen, gp70, in promoting phagocytosis and reducing disease burden. Front Microbiol. 2017;8:345. doi:10.3389/fmicb.2017.00345
  • Chen F, Jiang R, Wang Y, et al. Recombinant phage elicits protective immune response against systemic S. globosa infection in mouse model. Sci Rep. 2017;7:42024. doi:10.1038/srep42024
  • de Almeida JR, Kaihami GH, Jannuzzi GP, de Almeida SR. Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulent Sporothrix schenckii and Sporothrix brasiliensis. Med Mycol. 2015;53(1):42–50. doi:10.1093/mmy/myu049
  • Castro RA, Kubitschek-Barreira PH, Teixeira PA, et al. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS One. 2013;8(10):e75656. doi:10.1371/journal.pone.0075656
  • Rossato L, Moreno LF, Jamalian A, et al. Proteins potentially involved in immune evasion strategies in Sporothrix brasiliensis elucidated by ultra-high-resolution mass spectrometry. mSphere. 2018;3(3):e00514–00517. doi:10.1128/mSphere.00514-17
  • Portuondo DL, Dores-Silva PR, Ferreira LS, et al. Immunization with recombinant enolase of Sporothrix spp. (rSsEno) confers effective protection against sporotrichosis in mice. Sci Rep. 2019;9(1):17179. doi:10.1038/s41598-019-53135-z
  • Téllez MD, Batista-Duharte A, Portuondo D, Quinello C, Bonne-Hernández R, Carlos IZ. Sporothrix schenckii complex biology: environment and fungal pathogenicity. Microbiology. 2014;160(Pt 11):2352–2365. doi:10.1099/mic.0.081794-0
  • Tsuboi R, Sanada T, Takamori K, Ogawa H. Isolation and properties of extracellular proteinases from Sporothrix schenckii. J Bacteriol. 1987;169(9):4104–4109. doi:10.1128/jb.169.9.4104-4109.1987
  • Hogan LH, Klein BS, Levitz SM. Virulence factors of medically important fungi. Clin Microbiol Rev. 1996;9(4):469–488. doi:10.1128/CMR.9.4.469
  • Da Rosa D, Gezuele E, Calegari L, Goñi F. Excretion-secretion products and proteases from live Sporothrix schenckii yeast phase: immunological detection and cleavage of human IgG. Rev Inst Med Trop Sao Paulo. 2009;51(1):1–7. doi:10.1590/S0036-46652009000100001
  • Lima OC, Bezerra LML. Identification of a concanavalin A-binding antigen of the cell surface of Sporothrix schenckii. J Med Vet Mycol. 1997;35(3):167–172. doi:10.1080/02681219780001101
  • Sandoval-Bernal G, Barbosa-Sabanero G, Shibayama M, Perez-Torres A, Tsutsumi V, Sabanero M. Cell wall glycoproteins participate in the adhesion of Sporothrix schenckii to epithelial cells. Mycopathologia. 2011;171(4):251–259. doi:10.1007/s11046-010-9372-8
  • Oda LM, Kubelka CF, Alviano CS, Travassos LR. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages. Infect Immun. 1983;39(2):497–504. doi:10.1128/iai.39.2.497-504.1983
  • Lloyd KO, Bitoon MA. Isolation and purification of a peptido-rhamnomannan from the yeast form of Sporothrix schenckii. Structural and immunochemical studies. J Immunol. 1971;107(3):663–671.
  • García-Carnero LC, Salinas-Marín R, Lozoya-Pérez NE, et al. The heat shock protein 60 and Pap1 participate in the Sporothrix schenckii-host interaction. J Fungi. 2021;7(11):960. doi:10.3390/jof7110960
  • Tamez-Castrellon AK, Romeo O, Garcia-Carnero LC, Lozoya-Perez NE, Mora-Montes HM. Virulence factors in Sporothrix schenckii, one of the causative agents of sporotrichosis. Curr Protein Pept Sci. 2020;21(3):295–312. doi:10.2174/1389203720666191007103004
  • Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev. 2009;227(1):234–247. doi:10.1111/j.1600-065X.2008.00718.x
  • Almeida S. Therapeutic monoclonal antibody for sporotrichosis. Front Microbiol. 2012;3:409. doi:10.3389/fmicb.2012.00409
  • Fernandes GF, Dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence. 2013;4(3):241–249. doi:10.4161/viru.23112
  • Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14(4):392–399. doi:10.1016/j.mib.2011.07.001
  • Martinez-Alvarez JA, Perez-Garcia LA, Flores-Carreon A, Mora-Montes HM. The immune response against Candida spp. and Sporothrix schenckii. Rev Iberoam Micol. 2014;31(1):62–66. doi:10.1016/j.riam.2013.09.015
  • Almeida-Paes R, de Oliveira LC, Oliveira MME, Gutierrez-Galhardo MC, Nosanchuk JD, Zancopé-Oliveira RM. Phenotypic characteristics associated with virulence of clinical isolates from the Sporothrix complex. Biomed Res Int. 2015;2015:212308. doi:10.1155/2015/212308
  • Madrid IM, Xavier MO, Mattei AS, et al. Role of melanin in the pathogenesis of cutaneous sporotrichosis. Microbes Infect. 2010;12(2):162–165. doi:10.1016/j.micinf.2009.10.004
  • Song Y, Yao L, Zhen Y, et al. Sporothrix globosa melanin inhibits antigen presentation by macrophages and enhances deep organ dissemination. Braz J Microbiol. 2021;52(1):19–31. doi:10.1007/s42770-020-00345-7
  • Jiao Q, Luo Y, Scheffel J, et al. Skin mast cells contribute to Sporothrix schenckii infection. Front Immunol. 2020;11:469. doi:10.3389/fimmu.2020.00469
  • Romo-Lozano Y, Hernández-Hernández F, Salinas E. Mast cell activation by conidia of Sporothrix schenckii: role in the severity of infection. Scand J Immunol. 2012;76(1):11–20. doi:10.1111/j.1365-3083.2012.02706.x
  • Cambi A, Netea MG, Mora-Montes HM, et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J Biol Chem. 2008;283(29):20590–20599. doi:10.1074/jbc.M709334200
  • Verdan FF, Faleiros JC, Ferreira LS, et al. Dendritic cell are able to differentially recognize Sporothrix schenckii antigens and promote Th1/Th17 response in vitro. Immunobiology. 2012;217(8):788–794. doi:10.1016/j.imbio.2012.04.006
  • Kusuhara M, Qian H, Li X, et al. Mouse bone marrow-derived dendritic cells can phagocytize the Sporothrix schenckii, and mature and activate the immune response by secreting interleukin-12 and presenting antigens to T lymphocytes. J Dermatol. 2014;41(5):386–392. doi:10.1111/1346-8138.12472
  • Zu J, Yao L, Song Y, et al. Th2 Biased immunity with altered B cell profiles in circulation of patients with sporotrichosis caused by Sporothrix globosa. Front Immunol. 2020;11:570888. doi:10.3389/fimmu.2020.570888
  • Uenotsuchi T, Takeuchi S, Matsuda T, et al. Differential induction of Th1-prone immunity by human dendritic cells activated with Sporothrix schenckii of cutaneous and visceral origins to determine their different virulence. Int Immunol. 2006;18(12):1637–1646. doi:10.1093/intimm/dxl097
  • Nascimento RC, Almeida SR. Humoral immune response against soluble and fractionate antigens in experimental sporotrichosis. FEMS Immunol Med Microbiol. 2005;43(2):241–247. doi:10.1016/j.femsim.2004.08.004
  • Almeida-Paes R, Pimenta MA, Monteiro PC, Nosanchuk JD, Zancopé-Oliveira RM. Immunoglobulins G, M, and A against Sporothrix schenckii exoantigens in patients with sporotrichosis before and during treatment with itraconazole. Clin Vaccine Immunol. 2007;14(9):1149–1157. doi:10.1128/CVI.00149-07
  • Kozel TR. Activation of the complement system by pathogenic fungi. Clin Microbiol Rev. 1996;9(1):34–46. doi:10.1128/CMR.9.1.34
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi:10.3389/fimmu.2014.00520
  • Chen F, Jiang R, Dong S, Yan B. Efficient treatment of Sporothrix globosa infection using the antibody elicited by recombinant phage nanofibers. Front Pharmacol. 2019;10:160. doi:10.3389/fphar.2019.00160
  • Kong X, Xiao T, Lin J, Wang Y, Chen HD. Relationships among genotypes, virulence and clinical forms of Sporothrix schenckii infection. Clin Microbiol Infect. 2006;12(11):1077–1081. doi:10.1111/j.1469-0691.2006.01519.x
  • Fischman Gompertz O, Rodrigues AM, Fernandes GF, Bentubo HDL, de Camargo ZP, Petri V. Atypical clinical presentation of sporotrichosis caused by Sporothrix globosa resistant to itraconazole. Am J Trop Med Hyg. 2016;94(6):1218–1222. doi:10.4269/ajtmh.15-0267
  • Gu A, Zhang X, Ma F, Nie Z, Sybren de Hoog G, Zhang Y. Fixed cutaneous sporotrichosis in a patient with numerous fungal elements. Med Mycol Case Rep. 2020;29:32–34. doi:10.1016/j.mmcr.2020.06.001
  • Liu Y, Liu L, Kang M, Zong Z. An unhealing wound and subcutaneous nodules due to Sporothrix globosa after a cat bite. PLoS Negl Trop Dis. 2020;14(12):e0008859. doi:10.1371/journal.pntd.0008859
  • Liu F, Liu Y, Yuan N, et al. Fixed cutaneous sporotrichosis due to Sporothrix globosa. Clin Cosmet Investig Dermatol. 2021;14:91–96. doi:10.2147/CCID.S288259
  • Orofino-Costa R, Macedo PM, Rodrigues AM, Bernardes-Engemann AR. Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An Bras Dermatol. 2017;92(5):606–620. doi:10.1590/abd1806-4841.2017279
  • Zhang M, Li F, Gong J, Yang X, Zhang J, Zhao F. Development and evaluation of a real-time polymerase chain reaction for fast diagnosis of sporotrichosis caused by Sporothrix globosa. Med Mycol. 2020;58(1):61–65. doi:10.1093/mmy/myz029
  • de Oliveira MME, Sampaio P, Almeida-Paes R, Pais C, Gutierrez-Galhardo MC, Zancope-Oliveira RM. Rapid identification of Sporothrix species by T3B fingerprinting. J Clin Microbiol. 2012;50(6):2159–2162. doi:10.1128/JCM.00450-12
  • Rodrigues AM, Najafzadeh MJ, de Hoog GS, de Camargo ZP. Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification. Front Microbiol. 2015;6:1385. doi:10.3389/fmicb.2015.01385
  • Lopes-Bezerra LM, Mora-Montes HM, Bonifaz A. Sporothrix and sporotrichosis. In: Mora-Montes HM, Lopes-Bezerra LM, editors. Current Progress in Medical Mycology. Vol. 1. Switzerland: Springer, Cham; 2017:309–331.
  • Brito MM, Conceição-Silva F, Morgado FN, et al. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model. Med Mycol. 2007;45(8):721–729. doi:10.1080/13693780701625131
  • Bonifaz A, Vázquez-González D. Diagnosis and treatment of lymphocutaneous sporotrichosis: what are the options? Curr Fungal Infect Rep. 2013;7(3):252–259. doi:10.1007/s12281-013-0140-3
  • de Lima Barros MB, Schubach AO, de Vasconcellos Carvalhaes de Oliveira R, Martins EB, Teixeira JL, Wanke B. Treatment of cutaneous sporotrichosis with itraconazole-study of 645 patients. Clin Infect Dis. 2011;52(12):e200–e206. doi:10.1093/cid/cir245
  • Barros MB, de Almeida Paes R, Schubach AO. Sporothrix schenckii and Sporotrichosis. Clin Microbiol Rev. 2011;24(4):633–654. doi:10.1128/CMR.00007-11
  • Li J, Zhu M, An L, Chen F, Zhang X. Fungicidal efficacy of photodynamic therapy using methylene blue against Sporothrix globosa in vitro and in vivo. Eur J Dermatol. 2019;29(2):160–166. doi:10.1684/ejd.2019.3527
  • Ottonelli Stopiglia CD, Magagnin CM, Castrillón MR, et al. Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol. 2014;52(1):56–64. doi:10.3109/13693786.2013.818726
  • Bao F, Pan Q, Wang Z, Liu H, Zhang F. Susceptibility testing of clinical isolates of Sporothrix globosa in Shandong, China. Mycoses. 2020;63(11):1191–1194. doi:10.1111/myc.13141
  • Li J, Zhan P, Jiang Q, et al. Prevalence and antifungal susceptibility of Sporothrix species in Jiangxi, central China. Med Mycol. 2019;57(8):954–961. doi:10.1093/mmy/myy163
  • Song Y, Li S, Shi Y, et al. In vitro antifungal susceptibility of Sporothrix globosa isolates from Jilin Province, northeastern China: comparison of yeast and mycelial phases. Braz J Microbiol. 2021;52(1):81–90. doi:10.1007/s42770-020-00316-y