310
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Newly Emerging MDR B. cereus in Mugil seheli as the First Report Commonly Harbor nhe, hbl, cytK, and pc-plc Virulence Genes and bla1, bla2, tetA, and ermA Resistance Genes

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon & show all
Pages 2167-2185 | Published online: 24 Apr 2022

References

  • Abouelmaatti RR, Algammal AM, Li X, Ma J, Abdelnaby EA, Elfeil WM. Experimental immunology cloning and analysis of Nile tilapia Toll-like receptors type-3 mRNA. Central Eur J Immunol. 2013;3(3):277–282. doi:10.5114/ceji.2013.37740
  • FAO. STATE of WORLD FISHERIES and AQUACULTURE 2020 (RUSSIAN EDITION): Sustainability in Action. FOOD & AGRICULTURE ORG; 2020.
  • Boyd C, McNevin A. Aquaculture, Resource Use, and the Environment. John Wiley & Sons; 2015.
  • Molenaar EJ, Caddell R. International fisheries law: achievements, limitations and challenges. Strengthen Int Fish Law Era Changing Oceans. 2019;3–10. doi:10.5040/9781509923373
  • Liu OR, Molina R, Wilson M, Halpern BS. Global opportunities for mariculture development to promote human nutrition. PeerJ. 2018;6:e4733. doi:10.7717/peerj.4733
  • Saleh M. Capture-based aquaculture of mullets in Egypt. Capture-based aquaculture. Global overview. FAO Fish Tech Paper. 2008;508:109–126.
  • Eisawy A. Status of aquaculture in the Arab Republic of Egypt. Paper presented at: FAO, Rome (Italy). Fisheries Dept. FAO/CIFA Symposium on Aquaculture in Africa; September 30; 1975; 1975; Accra (Ghana).
  • Soliman NF. Aquaculture in Egypt Under Changing Climate. Alexandria, Egypt: Alexandria Research Center for Adaptation to Climate Change (ARCA); 2017.
  • Leung TL, Bates AE, Dulvy N. More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J Appl Ecol. 2013;50(1):215–222. doi:10.1111/1365-2644.12017
  • Faruk M, Ali M, Patwary Z. Evaluation of the status of use of chemicals and antibiotics in freshwater aquaculture activities with special emphasis to fish health management. J Bangla Agric Univ. 2008;6(2):381–390. doi:10.3329/jbau.v6i2.4838
  • Ovcharenko M. Microparasites of worldwide mullets. Ann Parasitol. 2015;61(4):229–239. doi:10.17420/ap6104.12
  • Baya A, Li T, Lupiani B, Hetrick F. Bacillus cereus, a pathogen for striped bass. Paper presented at: Eastern Fish Health and American Fisheries Society Fish Health Section Workshop; 1992.
  • Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008;32(4):579–606. doi:10.1111/j.1574-6976.2008.00112.x
  • Ramarao N, Tran S-L, Marin M, Vidic J. Advanced methods for detection of Bacillus cereus and its pathogenic factors. Sensors. 2020;20(9):2667. doi:10.3390/s20092667
  • Osman KM, Kappell AD, Orabi A, et al. Poultry and beef meat as potential seedbeds for antimicrobial resistant enterotoxigenic Bacillus species: a materializing epidemiological and potential severe health hazard. Sci Rep. 2018;8(1):1–15. doi:10.1038/s41598-018-29932-3
  • Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010;23(2):382–398. doi:10.1128/CMR.00073-09
  • Hoffmaster AR, Hill KK, Gee JE, et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol. 2006;44(9):3352–3360. doi:10.1128/JCM.00561-06
  • Hilliard NJ, Schelonka RL, Waites KB. Bacillus cereus bacteremia in a preterm neonate. J Clin Microbiol. 2003;41(7):3441–3444. doi:10.1128/JCM.41.7.3441-3444.2003
  • Fiedler G, Schneider C, Igbinosa EO, et al. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019;19(1):1–13. doi:10.1186/s12866-019-1632-2
  • Citron DM, Appleman MD. In vitro activities of daptomycin, ciprofloxacin, and other antimicrobial agents against the cells and spores of clinical isolates of Bacillus species. J Clin Microbiol. 2006;44(10):3814–3818. doi:10.1128/JCM.00881-06
  • Jensen LB, Baloda S, Boye M, Aarestrup FM. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ Int. 2001;26(7–8):581–587. doi:10.1016/S0160-4120(01)00045-9
  • Algammal AM, Mabrok M, Sivaramasamy E, et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor opr L and tox A virulence genes and bla TEM, bla CTX-M, and tet A antibiotic-resistance genes. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-72264-4
  • Algammal AM, Hetta HF, Elkelish A, et al. Methicillin-resistant Staphylococcus aureus (MRSA): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect Drug Resist. 2020;13:3255. doi:10.2147/IDR.S272733
  • Pychynski T, Malanowska T, Kozlowski M. Bacterial flora in branchionecrosis of carp (particularly Bacillus cereus and Bacillus subtilis). Med Weter. 1981;37(12):742–743.
  • Yiagnisis M, Athanassopoulou F. Bacteria isolated from diseased wild and farmed marine fish in Greece. Recent Adv Fish Farms. 2011;27(2):61–69.
  • Aboyadak IM, Sabry NM, Ali NG, El-Sayed HS. Isolation of Staphylococcus epidermidis, Bacillus cereus and Pseudomonas stutzeri from diseased European sea bass (Dicentrarchus labrax) for the first time in Egypt. Egypt J Aquatic Biol Fish. 2016;20(4):103–114. doi:10.21608/ejabf.2016.11182
  • Ali NG, Aboyadak IM, El-Sayed HS. Chemotherapeutic control of Gram-positive infection in white sea bream (Diplodus sargus, Linnaeus 1758) broodstock. Vet World. 2019;12(2):316. doi:10.14202/vetworld.2019.316-324
  • Chandra G, Bhattacharjee I, Chatterjee S. Bacillus cereus infection in stinging catfish, Heteropneustes fossilis (Siluriformes: heteropneustidae) and their recovery by Argemone mexicana seed extract. Iran J Fish Sci. 2015;14(3):741–753.
  • Schäperclaus W. Fish Diseases. Vol. 1. CRC Press; 1992.
  • Maturin L, Peeler JT. Bacteriological Analytical Manual. US Food and Drug Administration; 2001.
  • Navas M, Pincus DH, Wilkey K, et al. Identification of aerobic Gram-positive bacilli by use of Vitek MS. J Clin Microbiol. 2014;52(4):1274–1277. doi:10.1128/JCM.03483-13
  • Yamada S, Ohashi E, Agata N, Venkateswaran K. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl Environ Microbiol. 1999;65(4):1483–1490. doi:10.1128/AEM.65.4.1483-1490.1999
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. doi:10.1093/molbev/mst197
  • Osman KM, Samir A, Abo-Shama UH, Mohamed EH, Orabi A, Zolnikov T. Determination of virulence and antibiotic resistance pattern of biofilm producing Listeria species isolated from retail raw milk. BMC Microbiol. 2016;16(1):1–13. doi:10.1186/s12866-016-0880-7
  • Wiwat C, Thiramanas R. Detection of hemolysin BL gene of Bacillus cereus isolates. Mahidol Univ J Pharm Sci. 2014;41:22–30.
  • Quinn P, Markey BK, Carter M, Donnelly W, Leonard F. Veterinary microbiology and microbial disease. Science. 2002;295:1892–1895. doi:10.1126/science.1068732
  • Park Y-B, Kim J-B, Shin S-W, et al. Prevalence, genetic diversity, and antibiotic susceptibility of Bacillus cereus strains isolated from rice and cereals collected in Korea. J Food Prot. 2009;72(3):612–617. doi:10.4315/0362-028X-72.3.612
  • CLSI. Bacillus. In: Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: 27th Ed 424 Informational Supplement. CLSI; 2017. CLSI Doc. M100-S20 (2017).
  • Magiorakos A-P, Srinivasan A, Carey R, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–170. doi:10.1128/aem.46.1.165-170.1983
  • Ehling-Schulz M, Guinebretiere M-H, Monthán A, Berge O, Fricker M, Svensson B. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett. 2006;260(2):232–240. doi:10.1111/j.1574-6968.2006.00320.x
  • Schraft H, Griffiths M. Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR. Appl Environ Microbiol. 1995;61(1):98–102. doi:10.1128/aem.61.1.98-102.1995
  • Sergeev N, Distler M, Vargas M, Chizhikov V, Herold KE, Rasooly A. Microarray analysis of Bacillus cereus group virulence factors. J Microbiol Methods. 2006;65(3):488–502. doi:10.1016/j.mimet.2005.09.013
  • Chen Y, Tenover FC, Koehler TM. β-Lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob Agents Chemother. 2004;48(12):4873–4877. doi:10.1128/AAC.48.12.4873-4877.2004
  • Rather MA, Aulakh RS, Gill JPS, Mir AQ, Hassan MN. Detection and sequencing of plasmid encoded tetracycline resistance determinants (tetA and tetB) from food–borne Bacillus cereus isolates. Asian Pac J Trop Med. 2012;5(9):709–712. doi:10.1016/S1995-7645(12)60111-4
  • Adimpong DB, Sørensen KI, Thorsen L, et al. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl Environ Microbiol. 2012;78(22):7903–7914. doi:10.1128/AEM.00730-12
  • Meyers TR. Fish Pathology Section Laboratory Manual. Alaska Department of Fish and Game, Commercial Fisheries Division; 2000.
  • Sutton S. Measurement of microbial cells by optical density. J Validation Technol. 2011;17(1):46–49.
  • Austin B. Emerging bacterial fish pathogens. Bull Eur Assoc Fish Pathol. 1999;19(6):231–234.
  • Tongyoo N, Thongsaeng P, Kumphakarm R, Moungmai R. Bacillus cereus and B. pumilus associated with epizootic ulcerative syndrome in Siamese Tiger fish (Datnioides microlepsis). Paper presented at: 31st Congress on Science and Technology of Thailand at Suranaree University of Technology; 2005.
  • Visiello R, Colombo S, Carretto E. Bacillus cereus hemolysins and other virulence factors. In: The Diverse Faces of Bacillus Cereus. Elsevier; 2016:35–44.
  • Kim M-J, Han J-K, Park J-S, et al. Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. J Microbiol Biotechnol. 2015;25(6):872–879. doi:10.4014/jmb.1502.02003
  • Gdoura-Ben Amor M, Siala M, Zayani M, et al. Isolation, identification, prevalence, and genetic diversity of Bacillus cereus group bacteria from different foodstuffs in Tunisia. Front Microbiol. 2018;9:447. doi:10.3389/fmicb.2018.00447
  • Mursyidah R, Zulfa A, Laith A. Isolation and identification bacillus bacteria in tilapia (Oreochromis niloticus) using the Vitek-2 compact. Paper presented at: IOP Conference Series: Earth and Environmental Science; 2021.
  • Younes AM, Gaafar AY, Alaa Eldeen Z, et al. Isolation and pathogenicity determination of Bacillus cereus associated with ulcer formation in African catfish Clarias gariepinus. Asian J Anim Sci. 2011;15:12–18.
  • Ababouch L. Assuring fish safety and quality in international fish trade. Mar Pollut Bull. 2006;53(10–12):561–568. doi:10.1016/j.marpolbul.2006.08.011
  • Majed R, Faille C, Kallassy M, Gohar M. Bacillus cereus biofilms—same, only different. Front Microbiol. 2016;7:1054. doi:10.3389/fmicb.2016.01054
  • Cihan AC, Karaca B, Ozel BP, Kilic T. Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family. World J Microbiol Biotechnol. 2017;33(6):118. doi:10.1007/s11274-017-2271-0
  • Wijman JG, de Leeuw PP, Moezelaar R, Zwietering MH, Abee T. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol. 2007;73(5):1481–1488. doi:10.1128/AEM.01781-06
  • Beecher DJ, Wong A. Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl Environ Microbiol. 1994;60(5):1646–1651. doi:10.1128/aem.60.5.1646-1651.1994
  • Hwang J-Y, Park J-H. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. J Dairy Sci. 2015;98(3):1652–1660. doi:10.3168/jds.2014-9042
  • Prüß BM, Dietrich R, Nibler B, Märtlbauer E, Scherer S. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl Environ Microbiol. 1999;65(12):5436–5442. doi:10.1128/AEM.65.12.5436-5442.1999
  • Pirhonen T, Andersson M, Jääskeläinen EL, Salkinoja-Salonen M, Honkanen-Buzalski T, Johansson T-L. Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiol. 2005;22(1):87–91. doi:10.1016/j.fm.2004.04.002
  • Drobniewski FA. Bacillus cereus and related species. Clin Microbiol Rev. 1993;6(4):324–338.
  • Beecher DJ, Olsen TW, Somers EB, Wong AC. Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infect Immun. 2000;68(9):5269–5276. doi:10.1128/IAI.68.9.5269-5276.2000
  • Nguyen AT, Tallent SM. Screening food for Bacillus cereus toxins using whole genome sequencing. Food Microbiol. 2019;78:164–170. doi:10.1016/j.fm.2018.10.008
  • Savić D, Miljković-Selimović B, Lepšanović Z, et al. Antimicrobial susceptibility and β-lactamase production in Bacillus cereus isolates from stool of patients, food and environment samples. Vojnosanitetski pregled. 2016;73(10):904–909. doi:10.2298/VSP150415134S
  • Mousa D, Abd El Tawab A, El Hofy F, Maarouf A. Molecular studies on antibiotic resistant Bacillus cereus isolated from meat products and human in Kaliobia, Egypt. Benha Vet Med J. 2020;38(2):125–130. doi:10.21608/bvmj.2020.25802.1187
  • Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol. 2005;105(3):281–295. doi:10.1016/j.ijfoodmicro.2005.03.008
  • Algammal AM, Mabrok M, Ezzat M, et al. Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture. 2021;2021:737643.
  • Enany ME, Algammal AM, Shagar GI, Hanora AM, Elfeil WK, Elshaffy NM. Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pak J Pharm Sci. 2018;31(5):1865–1870.
  • El-Sayed M, Algammal A, Abouel-Atta M, Mabrok M, Emam A. Pathogenicity, genetic typing, and antibiotic sensitivity of Vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev Med Vet. 2019;170:80–86.
  • Smith P. The performance of antimicrobial susceptibility testing programmes relevant to aquaculture and aquaculture products. 2019.
  • Caro-Astorga J, Pérez-García A, de Vicente A, Romero D. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Front Microbiol. 2015;5:745. doi:10.3389/fmicb.2014.00745
  • Owusu-Kwarteng J, Wuni A, Akabanda F, Tano-Debrah K, Jespersen L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017;17(1):1–8. doi:10.1186/s12866-017-0975-9
  • Smith D, Berrang M, Feldner P, Phillips R, Meinersmann R. Detection of Bacillus cereus on selected retail chicken products. J Food Prot. 2004;67(8):1770–1773. doi:10.4315/0362-028X-67.8.1770
  • Guinebretière M-H, Broussolle V, Nguyen-The C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol. 2002;40(8):3053–3056. doi:10.1128/JCM.40.8.3053-3056.2002
  • Tewari A, Singh S, Singh R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J Food Sci Technol. 2015;52(3):1796–1801. doi:10.1007/s13197-013-1162-0
  • Ngamwongsatit P, Buasri W, Pianariyanon P, et al. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol. 2008;121(3):352–356. doi:10.1016/j.ijfoodmicro.2007.11.013
  • Rather M, Aulakh R, Gill J, Ghatak S. Enterotoxin gene profile and antibiogram of Bacillus cereus strains isolated from raw meats and meat products. J Food Saf. 2012;32(1):22–28. doi:10.1111/j.1745-4565.2011.00340.x
  • Abdeen E, Hussien H, Hadad GAE, Mousa WS. Prevalence of virulence determinants among Bacillus cereus isolated from milk products with potential public health concern. Pak J Biol Sci. 2020;23(3):206–212. doi:10.3923/pjbs.2020.206.212
  • Bhunia AK. Bacillus cereus and Bacillus anthracis. In: Foodborne Microbial Pathogens. Springer; 2018:193–207.
  • Gilmore MS, Cruz-Rodz AL, Leimeister-Wächter M, Kreft J, Goebel W. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol. 1989;171(2):744–753. doi:10.1128/jb.171.2.744-753.1989
  • Pomerantsev A, Kalnin K, Osorio M, Leppla S. Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun. 2003;71(11):6591–6606. doi:10.1128/IAI.71.11.6591-6606.2003
  • Bianco A, Capozzi L, Monno MR, et al. Characterization of Bacillus cereus group isolates from human bacteremia by whole-genome sequencing. Front Microbiol. 2020;11. doi:10.3389/fmicb.2020.599524
  • Materon IC, Queenan AM, Koehler TM, Bush K, Palzkill T. Biochemical characterization of β-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003;47(6):2040–2042. doi:10.1128/AAC.47.6.2040-2042.2003
  • Fenselau C, Havey C, Teerakulkittipong N, Swatkoski S, Laine O, Edwards N. Identification of β-lactamase in antibiotic-resistant Bacillus cereus spores. Appl Environ Microbiol. 2008;74(3):904–906. doi:10.1128/AEM.00788-07
  • Tahmasebi H, Talebi R, Zarif B. Isolated of Bacillus cereus in chicken meat and investigation β-lactamase antibiotic-resistant in Bacillus cereus from chicken meat. Adv Life Sci. 2014;4(4):200–206.
  • Sornchuer P, Saninjuk K, Prathaphan P, Tiengtip R, Wattanaphansak S. Antimicrobial susceptibility profile and whole-genome analysis of a strong biofilm-forming Bacillus Sp. B87 strain isolated from food. Microorganisms. 2022;10(2):252. doi:10.3390/microorganisms10020252
  • Sornchuer P, Tiengtip R. Prevalence, virulence genes, and antimicrobial resistance of Bacillus cereus isolated from foodstuffs in Pathum Thani Province, Thailand. Pharma Sci Asia. 2021;48(2):194–203. doi:10.29090/psa.2021.02.19.119
  • Chen Y, Succi J, Tenover FC, Koehler TM. β-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol. 2003;185(3):823–830. doi:10.1128/JB.185.3.823-830.2003
  • Carruth L, Roess AA, Terefe Y, Hosh FM, Salman M. Antimicrobial resistance and food safety in Africa. Lancet Infect Dis. 2017;17:575–576. doi:10.1016/S1473-3099(17)30273-6
  • Lerminiaux NA, Cameron AD. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34–44. doi:10.1139/cjm-2018-0275
  • Özdemir F, Arslan S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef. J Food Sci. 2019;84(3):548–556. doi:10.1111/1750-3841.14445