3,157
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective

, ORCID Icon & ORCID Icon
Pages 4645-4673 | Received 06 Mar 2022, Accepted 23 Jun 2022, Published online: 23 Aug 2022

References

  • Lim JY, Yoon JW, Hovide CJ. A BRIEF overview of Escherichia coli O157:H7 and Its Plasmid O157. J Microbiol Biotechnol. 2010;20(1):5–14. doi:10.4014/jmb.0908.08007
  • Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep. 2013;5(1):58–65. doi:10.1111/1758-2229.12019
  • Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–140. doi:10.1038/nrmicro818
  • Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638.
  • Bergeron CR, Prussing C, Boerlin P, et al. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg Infect Dis. 2012;18(3):415–421. doi:10.3201/eid1803.111099
  • Schroeder CM, Zhao C, DebRoy C, et al. Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol. 2002;68(2):576–581. doi:10.1128/AEM.68.2.576-581.2002
  • Arshad R, Farooq S, Ali SS. Manipulation of different media and methods for cost-effective characterization of E. coli strains collected from different habitats. Pak. J Bot. 2006;38:779–781.
  • Garrine M, Matambisso G, Nobela N, et al. Low frequency of enterohemorrhagic, enteroinvasive and diffusely adherent Escherichia coli in children under 5 years in rural Mozambique: a case-control study. BMC Infect Dis. 2020;20(1):1–6. doi:10.1186/s12879-020-05380-1
  • Jianga L, Yanga W, Jiangb X, Yaoa T, Wanga L, Yang B. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes. 2021;13(1):e1992237. doi:10.1080/19490976.2021.1992237
  • Ateba CN, Mbewe M. Detection of Escherichia coli O157:H7 virulence genes in isolates from beef, pork, water, human and animal species in the northwest province, South Africa: public health implications. Res Microbiol. 2011;162(3):240–248. doi:10.1016/j.resmic.2010.11.008
  • Casey TA, Bosworth BT. Design, and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine. J Vet Diagn Investig. 2009;21:25–30. doi:10.1177/104063870902100104
  • Zhang W, Zhao M, Ruesch L, Omot A, Francis D. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol. 2007;123(1–3):145–152. doi:10.1016/j.vetmic.2007.02.018
  • Conway T, Cohen PS. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spect. 2015;3:3. doi:10.1128/microbiolspec.MBP-0006-2014
  • Scheutz F, Teel LD, Beutin L, et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol. 2012;50(9):2951–2963. doi:10.1128/JCM.00860-12
  • Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol. 2008;6(12):904–912. doi:10.1038/nrmicro2029
  • Anjum MF, Mafura M, Slickers P, et al. Pathotyping Escherichia coli by using miniaturized DNA microarrays. Appl Environ Microbiol. 2007;73(17):5692–5697. doi:10.1128/AEM.00419-07
  • Ewers C, Li G, Wilking H, et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol. 2007;297(3):163–176. doi:10.1016/j.ijmm.2007.01.003
  • Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect. 2012;18(7):646–655. doi:10.1111/j.1469-0691.2012.03850.x
  • Bujnáková D, Karahutová L, Kmet’ V. Escherichia coli specific virulence-gene markers analysis for quality control of ovine cheese in Slovakia. Microorganisms. 2021;9(9):2–11. doi:10.3390/microorganisms9091808
  • Mccollum JT, Williams NJ, Beam SW, et al. Multistate outbreak of Escherichia coli O157:H7 Infections associated with in-store sampling of an aged raw-milk gouda cheese, 2010†. J Food Prot. 2012;75(10):1759–1765. doi:10.4315/0362-028X.JFP-12-136
  • Bielaszewska M, Mellmann A, Zhang W, et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis. 2011;11(9):671–676. doi:10.1016/S1473-3099(11)70165-7
  • Panel EB, Koutsoumanis K, Allende A, et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020;18:13.
  • Frenzen PD, Drake A, Angulo FJ. Economic cost of illness due to Escherichia coli O157 infections in the United States. J Food Prot. 2005;68(12):2623–2630. doi:10.4315/0362-028X-68.12.2623
  • Michino H, Araki K, Minami S, et al. Massive outbreak of Escherichia coli O157: H7 Infection in School children in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol. 1999;150(8):787–796. doi:10.1093/oxfordjournals.aje.a010082
  • Varma JK, Greene KD, Reller ME, et al. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA. 2003;290:2709–2712.
  • Karmali MA, Mascarenhas M, Shen S, et al. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol. 2003;41(11):4930–4940. doi:10.1128/JCM.41.11.4930-4940.2003
  • Karch H, Denamur E, Dobrindt U, et al. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol Med. 2012;4(9):841–848. doi:10.1002/emmm.201201662
  • Caprioli A, Maugliani A, Michelacci V, Morabito S. Molecular typing of Verocytotoxin-producing E. coli (VTEC) strains isolated from food, feed, and animals: state of play and standard operating procedures for pulsed field gel electrophoresis (PFGE) typing, profiles interpretation and curation. EFSA. 2014;1:1–55.
  • Blanco Crivelli X, Rumi MV, Carfagnini JC, Degregorio O, Bentancor AB. Synanthropic rodents as possible reservoirs of Shiga toxigenic Escherichia coli strains. Front Cell Infect Microbiol. 2012;2:134. doi:10.3389/fcimb.2012.00134
  • Karch H, Sorbitol-fermenting BM. Shiga toxin-producing Escherichia coli O157: H(-) strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J Clin Microbiol. 2001;39(6):2043–2049. doi:10.1128/JCM.39.6.2043-2049.2001
  • Eagar H, Swan G, Van Vuuren M. A survey of antimicrobial usage in South Africa with specific reference to food animals. J S Afr Vet Assoc. 2012;83(1):1–8. doi:10.4102/jsava.v83i1.16
  • Clements A, Young JC, Constantinou N, Frankel G. Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes. 2012;3(2):71–87. doi:10.4161/gmic.19182
  • Byun JW, Jung BY, Kim HY, Fairbrother JM, Lee MH, Lee WK. Real-time PCR for differentiation of F18 variants among enterotoxigenic and Shiga toxin-producing Escherichia coli from piglets with diarrhoea and oedema disease. Vet J. 2013;198(2):538–540. doi:10.1016/j.tvjl.2013.07.021
  • Paletta AC, Castro VS, Conte-Junior CA. Shiga toxin-producing and enteroaggregative Escherichia coli in animal, foods, and humans: pathogenicity mechanisms, detection methods, and epidemiology. Curr Microbiol. 2020;77(4):612–620. doi:10.1007/s00284-019-01842-1
  • Panel EB, Koutsoumanis K, Allende A, et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020;18:e05967.
  • Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11(1):142–201. doi:10.1128/CMR.11.1.142
  • Caprioli A, Morabito S, Brugere H, Oswald E. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res. 2005;36(3):289–311. doi:10.1051/vetres:2005002
  • Cho S, Bender JB, Diez-Gonzalez F, et al. Prevalence and characterization of Escherichia coli O157 isolates from Minnesota dairy farms and county fairs. J Food Prot. 2006;69(2):252–259. doi:10.4315/0362-028X-69.2.252
  • Jores J, Rumer L, Wieler LH. Impact of the locus of enterocyte effacement Pathogenicity Island on the evolution of pathogenic Escherichia coli. Int J Med Microbiol. 2004;294(2–3):103–113. doi:10.1016/j.ijmm.2004.06.024
  • Beata S, Michał T, Mateusz O, et al. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence. 2021;12:630–637. doi:10.1080/21505594.2021.1882780
  • Ogura Y, Ooka T, Iguchi A, et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A. 2009;106(42):17939–17944. doi:10.1073/pnas.0903585106
  • Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol. 1999;37:497–503. doi:10.1128/JCM.37.3.497-503.1999
  • Ostroff SM, Tarr PI, Neill MA, Lewis JH, Hargrett-Bean N, Kobayashi JM. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157:H7 infections. J Infect Dis. 1989;160:994–998. doi:10.1093/infdis/160.6.994
  • Shaheen BW, Nayak R, Boothe DM. Emergence of a New Delhi Metallo-β-Lactamase (NDM-1)-Encoding Gene in Clinical Escherichia coli Isolates Recovered from Companion Animals in the United States. Antimicrob Agents Chemother. 2013;57(6):2902–2903. doi:10.1128/AAC.02028-12
  • Serna A, Boedeker EC. Pathogenesis and treatment of Shiga toxin producing Escherichia coli infections. Curr Opin Gastroenterol. 2008;24(1):38–47. doi:10.1097/MOG.0b013e3282f2dfb8
  • Wong AR, Pearson JS, Bright MD, et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol. 2011;80(6):1420–1438. doi:10.1111/j.1365-2958.2011.07661.x
  • Bardiau M, Szalo M, Mainil JG. Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res. 2010;41;57. doi:10.1051/vetres/2010029.
  • Dallman TJ, Byrne L, Ashton PM, et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis. 2015;61(3):305–312. doi:10.1093/cid/civ318
  • Brandal LT, Wester AL, Lange H, et al. Shiga toxin-producing Escherichia coli infections in Norway, 1992–2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis. 2015;15(1):324. doi:10.1186/s12879-015-1017-6
  • Hancock DD, Besser TE, Rice DH, Herriott DE, Tarr PI. A. longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiol Infect. 1997;118:193–195. doi:10.1017/S0950268896007212
  • Bennett PM. Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother. 1999;43(1):1–4. doi:10.1093/jac/43.1.1
  • LeJeune JT, Besser TE, Hancock DD. Cattle water troughs as reservoirs of Escherichia coli O157. Appl Environ Microbiol. 2001;67:3053–3057. doi:10.1128/AEM.67.7.3053-3057.2001
  • Barker J, Humphrey TJ, Brown MW. Survival of Escherichia coli O157 in a soil protozoan: implications for disease. FEMS Microbiol Lett. 1999;173:291–295. doi:10.1111/j.1574-6968.1999.tb13516.x
  • Maule A. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. Symp Ser Soc Appl Microbiol. 2000;29:71S–78S. doi:10.1111/j.1365-2672.2000.tb05334.x
  • Mead PS, Slutsker L, Dietz V, et al. Food related illness and death in the United States. Emerg Infect Dis. 1999;5(5):607–625. doi:10.3201/eid0505.990502
  • Banatvala N, Griffin PM, Greene KD, et al. The United States national prospective haemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis. 2001;183:1063–1070. doi:10.1086/319269
  • Thompson JS, Hodge DS, Borczyk AA. Rapid biochemical test to identify verocytotoxin-positive strains of Escherichia coli serotype O157. J Clin Microbiol. 1990;28(10):2165–2168. doi:10.1128/jcm.28.10.2165-2168.1990
  • Dahmen S, Haenni M, Madec JY. IncI1/ST3 plasmids contribute to the dissemination of the blaCTX-M-1 gene in Escherichia coli from several animal species in France. J Antimicrob Chemother. 2012;67(12):3011–3012. doi:10.1093/jac/dks308
  • Dobrindt U, Agerer F, Michaelis K, et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol. 2003;185:1831–1840. doi:10.1128/JB.185.6.1831-1840.2003
  • Perna NT, Plunkett G, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157: H7. Nature. 2001;409:529–533. . doi:10.1038/35054089
  • Wick LM, Qi W, Lacher DW, Whittam TS. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol. 2005;187(5):1783–1791. doi:10.1128/JB.187.5.1783-1791.2005
  • Noller AC, McEllistrem MC, Stine OC, et al. Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41(2):675–679. doi:10.1128/JCM.41.2.675-679.2003
  • Kudva IT, Evans PS, Perna NT, et al. Strains of Escherichia coli O157:H7 differ primarily by insertions or deletions, not single-nucleotide polymorphisms. J Bacteriol. 2002;184(7):1873–1879. doi:10.1128/JB.184.7.1873-1879.2002
  • Zhou Z, Li X, Liu B, et al. Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One. 2010;5(1):e8700. doi:10.1371/journal.pone.0008700
  • Feng P, Lampel KA, Karch H, Whittam TS. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis. 1998;177(6):1750–1753. doi:10.1086/517438
  • Bilge SS, Vary JC, Dowell SF, Tarr PI. Role of the Escherichia coli O157: H7O side chain in adherence and analysis of a rfb locus. Infect Immun. 1996;64(11):4795–4801. doi:10.1128/iai.64.11.4795-4801.1996
  • Whittam TS, Wolfe ML, Wachsmuth IK, Orskov F, Orskov I, Wilson RA. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun. 1993;61(5):1619–1629. doi:10.1128/iai.61.5.1619-1629.1993
  • Karch H, Bielaszewska M. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: H(-) strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J Clin Microbiol. 2001;39(6):2043–2049.
  • Kim YJ, Kim JH, Hur J, Lee JH. Isolation of Escherichia coli from piglets in South Korea with diarrhea and characteristics of the virulence genes. Can J Vet Res. 2010;74:59–64.
  • Leopold SR, Shaikh N, Tarr PI. Further evidence of constrained radiation in the evolution of pathogenic Escherichia coli O157:H7. Infect Genet Evol. 2010;10(8):1282–1285. doi:10.1016/j.meegid.2010.07.021
  • Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl Environ Microbiol. 2011;77(9):2916–2925. doi:10.1128/AEM.02554-10
  • Ferdous M, Friedrich AW, Grundmann H, et al. Molecular characterization and phylogeny of Shiga toxin–producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing. Clin Microbiol Infect. 2016;22(7):642e1–642.e9. doi:10.1016/j.cmi.2016.03.028
  • Manning SD, Motiwala AS, Springman AC, et al. Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A. 2008;105(12):4868–4873. doi:10.1073/pnas.0710834105
  • Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A. 2011;108(50):20142–20147. doi:10.1073/pnas.1107176108
  • Liu W, Yuan C, Meng X, et al. Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Vet J. 2014;199(2):286–289. doi:10.1016/j.tvjl.2013.11.019
  • Iyoda S, Manning SD, Seto K, et al. Chromosomal and plasmid-encoded enzymes are Required for assembly of the R3-type core oligosaccharide in the Lipopolysaccharide of Escherichia coli O157:H7. J Biol Chem. 2004;279(30):31237–31250. doi:10.1074/jbc.M401879200
  • Soderlund R, Jernberg C, Ivarsson S, et al. Molecular typing of Escherichia coli O157:H7 isolates from Swedish cattle and human cases: population dynamics and virulence. J Clin Microbiol. 2014;52(11):3906–3912. doi:10.1128/JCM.01877-14
  • Bielaszewska M, Prager R, Kock R, et al. Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol. 2007;73(10):3144–3150. doi:10.1128/AEM.02937-06
  • Lim JY, Li J, Sheng H, Besser TE, Potter K, Hovde CJ. Escherichia coli O157:H7 colonization at the rectoanal junction of long duration culture-positive cattle. Appl Environ Microbiol. 2007;73(4):13802. doi:10.1128/AEM.02242-06
  • Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun. 2006;74(8):4685–4693. doi:10.1128/IAI.00406-06
  • Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog. 2012;8:e1002837. doi:10.1371/journal.ppat.1002837
  • Bauer ME, Welch RA. Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1996;64(1):167–175. doi:10.1128/iai.64.1.167-175.1996
  • Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun. 1995;63(3):1055–1061. doi:10.1128/iai.63.3.1055-1061.1995
  • Schmidt H, Bielaszewska M, Karch H. Transduction of enteric Escherichia coli isolates with a derivative of Shiga toxin 2-encoding bacteriophage phi3538 isolated from Escherichia coli O157:H7. Appl Environ Microbiol. 1999;65(9):3855–3861. doi:10.1128/AEM.65.9.3855-3861.1999
  • Brunder W, Schmidt H, Karch H. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology. 1996;142(11):3305–3315. doi:10.1099/13500872-142-11-3305
  • Brunder W, Schmidt H, Karch H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol. 1997;24:767–778. doi:10.1046/j.1365-2958.1997.3871751.x
  • van Diemen PM, Dziva F, Stevens MP, Wallis TS. Identification of enterohemorrhagic Escherichia coli O26:H- genes required for intestinal colonization in calves. Infect Immun. 2005;73:1735–1743. [PubMed: 15731074]. doi:10.1128/IAI.73.3.1735-1743.2005
  • Lathem WW, Grys TE, Witowski SE, et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol Microbiol. 2002;45(2):277–288. doi:10.1046/j.1365-2958.2002.02997.x
  • Elliott SJ, Sperandio V, Giron JA, et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 2000;68:6115–6126. doi:10.1128/IAI.68.11.6115-6126.2000
  • Klapproth JMA, Scaletsky CA, McNamara BP, et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun. 2000;68:2148–2155. doi:10.1128/IAI.68.4.2148-2155.2000
  • Stevens MP, Roe AJ, Vlisidou I, et al. Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun. 2004;72:5402–5411. doi:10.1128/IAI.72.9.5402-5411.2004
  • Morabito S, Tozzoli R, Oswald E, Caprioli A. A mosaic pathogenicity island made up of the locus of enterocyte effacement and a pathogenicity island of Escherichia coli O157:H7 is frequently present in attaching and effacing E. coli. Infect Immun. 2003;71:3343–3348. doi:10.1128/IAI.71.6.3343-3348.2003
  • Yoon JW, Minnich SA, Ahn JS, Park YH, Paszczynski A, Hovde CJ. Thermoregulation of the Escherichia coli O157:H7 pO157 ecf operon and lipid A myristoyl transferase activity involves intrinsically curved DNA. Mol Microbiol. 2004;51(2):419–435. doi:10.1046/j.1365-2958.2003.03827.x
  • Schlech WF, Chase DP, Badley A. A model of food-borne Listeria monocytogenes infection in the Sprague–Dawley rat using gastric inoculation: development and effect of gastric acidity on infective dose. Int J Food Microbiol. 1993;18(1):15–24. doi:10.1016/0168-1605(93)90003-Y
  • Benjamin MM, Datta AR. Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microbiol. 1995;61(4):1669–1672. doi:10.1128/aem.61.4.1669-1672.1995
  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol. 1999;181:3525–3535. doi:10.1128/JB.181.11.3525-3535.1999
  • Heiman KE, Mody RK, Johnson SD, Griffin PM, Gould LH. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg Infect Dis. 2015;21(8). doi:10.3201/eid2108.141364
  • Riley LW, Remis RS, Helgerson SD, et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308(12):681. doi:10.1056/NEJM198303243081203
  • Gyles CL, Prescott JF, Songer G, Thoen CO. Pathogenomics of Bacterial Infection in Animals. 4th ed. USA: Wiley-Blackwell; 2010.
  • Van TTH, Yidana Z, Smooker PM, Coloe PJ. Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. J Glob Antimicrob Resist. 2020;20:170–177. doi:10.1016/j.jgar.2019.07.031
  • Lim JM, Singh SR, Duong MC, Legido-Quigley H, Hsu LY, Tam CC. Impact of national interventions to promote responsible antibiotic use: a systematic review. J Antimicrob Chemother. 2020;75(1):14–29. doi:10.1093/jac/dkz348
  • Ateb CN, Mbewe M. Determination of the genetic similarities of fingerprints from Escherichia coli O157:H7 isolated from different sources in the North West Province, South Africa using ISR, BOXAIR and REP-PCR analysis. Microbiol Res. 2013;168(7):438–446. doi:10.1016/j.micres.2013.02.003
  • Willshaw GA, Smith HR, Cheasty T, Wall PG, Rowe B. Vero cytotoxin-producing Escherichia coli O157 outbreaks in England and Wales, 1995: phenotypic methods and genotypic subtyping. Emerg Infect Dis. 1997;3(4):561–565. doi:10.3201/eid0304.970422
  • Riley LW, Remis RS, Helgerson SD, et al. Haemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:681–685.
  • Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev. 2009;73:750–774. doi:10.1128/MMBR.00015-09
  • Ooka T, Ogura Y, Asadulghani M, et al. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res. 2009;19(10):1809–1816. doi:10.1101/gr.089615.108
  • Kusumoto M, Fukamizu D, Ogura Y, et al. Lineage-specific distribution of insertion sequence excision enhancer in enterotoxigenic Escherichia coli isolated from swine. Appl Environ Microbiol. 2014;80(4):394–402. doi:10.1128/AEM.03696-13
  • Clement M, Olabisi M, David E, Issa M. Veterinary Pharmaceuticals and Antimicrobial Resistance in Developing Countries. In: Bekoe S, Saravanan M, Adosraku K, Ramkumar P, editors. Veterinary Medicine and Pharmaceuticals. Intechopen Limited; 2020.
  • Leonard SR, Mammel MK, Lacher DW, Elkins CA. Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol. 2015;81(23):8183–8191. doi:10.1128/AEM.02601-15
  • Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–814. doi:10.1038/nmeth.2066
  • Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):46. doi:10.1186/gb-2014-15-3-r46
  • Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics. 2015;16(1):236. doi:10.1186/s12864-015-1419-2
  • Feng P, Weagant SD, Jinneman K. Diarrheagenic Escherichia coli. In: Bacteriological Analytical Manual (BAM). Silver Spring, MD: US Food and Drug Administration; 2013. Availabe at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4a-diarrheagenic-escherichia-coli.
  • Akindolire MA, Aremu BR, Ateba CN. Complete genome sequence of Escherichia coli O157: h7Phage PhiG17. Am Soc Microbiol. 2019;8(3):e01296–18.
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi:10.1093/nar/25.17.3389
  • Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–16. doi:10.1093/nar/gkh152
  • Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44(W1):54–57. doi:10.1093/nar/gkw413
  • Kulikov E, Kropinski AM, Golomidova A, et al. Isolation, and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology. 2012;426(2):93–99. doi:10.1016/j.virol.2012.01.027
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644. doi:10.1093/jac/dks261
  • Tsonos J, Oosterik LH, Tuntufye HN, et al. A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Vet Microbiol. 2014;171(3–4):470–479. doi:10.1016/j.vetmic.2013.10.021
  • Carattol A, Zankari E, García-Fernández A, et al. In silico detection and typing of plasmids using 92 PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(3):895–903.
  • Beyi AF, Fite AT, Tora E, et al. Prevalence, and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiol. 2017;17(49):1–6. doi:10.1186/s12866-017-0964-z
  • Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ. World Health Organization Global Estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2010;12(12):e1001923.
  • Lupindu AM. Epidemiology of Shiga toxin-producing Escherichia coli O157:H7 in Africa in review. S Afr J Infect Dis. 2018;33(1):24–30. doi:10.1080/23120053.2017.1376558
  • Lupindu AM, Olsen JE, Ngowi HA, et al. Occurrence and characterization of Shiga Toxin-producing Escherichia coli O157:H7 and other nonsorbitol–fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania. Vector-Borne Zoonotic Dis. 2014;14(7):503–510. doi:10.1089/vbz.2013.1502
  • Dahmen S, Bettaieb D, Mansour W, Boujaafar N, Boualleque O, Arlet G. Characterization, and molecular epidemiology of extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in a Tunisian University Hospital. Microb Drug Resist. 2010;16(2):163–170. doi:10.1089/mdr.2009.0108
  • Browning NG, Botha JR, Sacho H, et al. Escherichia coli O157: H7 haemorrhagic colitis. Report of the first South African case. S Afr J Surg. 1990;28(1):28.
  • Magwira CA, Gashe BA, Collison EK. Prevalence and antibiotic resistance profiles of Escherichia coli O157:H7 in beef products from retail outlets in Gaborone, Botswana. J Food Prot. 2005;68(2):403–406. doi:10.4315/0362-028X-68.2.403
  • Abong’o BO, Momba MNB. Prevalence and potential link between E. coli O157: H7 isolated from drinking water, meat and vegetables and stools of diarrheic confirmed and non-confirmed HIV/AIDS patients in the Amathole District - South Africa. J Appl Microbiol. 2008;105(2):424–431. doi:10.1111/j.1365-2672.2008.03756.x
  • Addo KK, Mensah GI, Aning KG, et al. Microbiological quality, and antibiotic residues in informally marketed raw cow milk within the coastal Savannah zone of Ghana. Trop Med Int Health. 2011;16(2):227–232. doi:10.1111/j.1365-3156.2010.02666.x
  • Siwila J, Phiri IGK, Vercruysse J, et al. Asymptomatic cryptosporidiosis in Zambian dairy farm workers and their household members. Trans R Soc Trop Med Hyg. 2007;101(7):733–734. doi:10.1016/j.trstmh.2007.01.006
  • Liu T. Custom, taste, and science: raising chickens in the Pearl River Delta region, South China, Anthropol. Med. 2008;15:7–18.
  • Lohiniva AL, Dueger E, Talaat M, et al. Poultry rearing and slaughtering practices in rural Egypt: an exploration of risk factors for H5N1 virus human transmission, Influenza Other Respir. Viruses. 2013;7:1251–1259.
  • Wang W, Owen H, Traub EJ, et al. Molecular epidemiology of Blastocystis in pigs and their in-contact humans in Southeast Queensland, Australia, and Cambodia. Vet Parasitol. 2014;203(3–4):264–269. doi:10.1016/j.vetpar.2014.04.006
  • Huo X, Zu R, Qi X, et al. Seroprevalence of avian influenza A (H5N1) virus among poultry workers in Jiangsu Province, China: an observational study. BMC Infect. 2012;10:12–93.
  • Ming PX, Ti YLX, Bulmer GS. Outbreak of Trichophyton verrucosum in China transmitted from cows to humans. Mycopathologia. 2006;161(4):225–228. doi:10.1007/s11046-005-0223-y
  • Wang J, Stanford K, McAllister TA, et al. Biofilm formation, virulence gene profiles, and antimicrobial resistance of nine serogroups of non-O157 Shiga toxin–producing Escherichia coli. Foodborne Pathog Dis. 2016;13(6):316–324. doi:10.1089/fpd.2015.2099
  • Amézquita-López BA, Quiñones B, Soto-Beltrán M, et al. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob Resist Infect Control. 2016;5(1):1. doi:10.1186/s13756-015-0100-5
  • Mashak Z. Prevalence and antibiotic resistance of Escherichia coli O157: h7Isolated from raw meat samples of ruminants and poultry. J Food Nutr Res. 2018;6(2):96–102. doi:10.12691/jfnr-6-2-5
  • Abdi S, Ranjbar R, Vala MH, Jonaidi N, Bejestany OB, Bejestany FB. Frequency of bla TEM, bla SHV, bla CTX-M, and qnrA among Escherichia coli isolated from urinary tract infection. Arch Clin Infect Dis. 2014;9(1). doi:10.5812/archcid.18690
  • Momtaz H, Karimian A, Madani M, et al. Uropathogenic Escherichia coli in Iran: serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob. 2013;12(1):1. doi:10.1186/1476-0711-12-8
  • Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol. 2016;7:1881. doi:10.3389/fmicb.2016.01881
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA. 2015;112(18):5649–5654. doi:10.1073/pnas.1503141112
  • Corona F, Martinez JL. Phenotypic resistance to antibiotics. Antibiotics. 2013;2(2):237–255. doi:10.3390/antibiotics2020237
  • Literak I, Dolejska M, Janoszowska D, et al. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Appl Environ Microbiol. 2010;76:8126–8134. doi:10.1128/AEM.01446-10
  • Henton MM, Eagar HA, Swan GE, van Vuuren M. Part VI. Antibiotic management and resistance in livestock production. S Afr Med J. 2011;101:583–586.
  • Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(22):27–38. doi:10.1128/AAC.01707-08
  • El-Halfway OM, Valvano MA. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design. Expert Opin Drug Discov. 2012;7(10):923–933. doi:10.1517/17460441.2012.712512
  • Ojala V, Laitalainen J, Jalasvuori M. Fight evolution with evolution: plasmid dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol Appl. 2013;3:925–32.
  • Dale JW, Park SF. Molecular Genetics of Bacteria. United Kingdom: Wiley-Blackwell; 2010.
  • Masood F, Malik A. Current aspects of metal resistant bacteria in bioremediation: from genes to ecosystem. In: Management of Microbial Resources in the Environment. New York: Springer; 2013.
  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics. 2002;163(4):1525–1532. doi:10.1093/genetics/162.4.1525
  • Uma B, Kesani P, Saddayappan R, Kannaiyan K, Yelavarthi LS. Antibiotic sensitivity and plasmid profiles of Escherichia coli isolated from pediatric diarrhea. J Glob Infect Dis. 2009;1:107–110. doi:10.4103/0974-777X.56255
  • Nsofor CA, Iroegbu CU. Plasmid profile of antibiotic resistance of Escherichia coli isolated from domestic animals in South-East Nigeria. J Cell Animal Biol. 2013;7:1096–1115.
  • Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury ARM. Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel. 2007;20(7):309–313. doi:10.1093/protein/gzm005
  • Gyles CL. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci. 2007;85(suppl_13):45–62. doi:10.2527/jas.2006-508
  • Mazaitis AJ, Maas R, Maas WK. Structure of a naturally occurring plasmid with genes for enterotoxin production and drug resistance. J Bacteriol. 1981;145(1):97105. doi:10.1128/jb.145.1.97-105.1981
  • Fekete PZ, Brzuszkiewicz E, Blum-Oehler G, et al. DNA sequence analysis of the composite plasmid pTC conferring virulence and antimicrobial resistance for porcine enterotoxigenic Escherichia coli. Int J Med Microbiol. 2012;302(1):4–9. doi:10.1016/j.ijmm.2011.07.003
  • Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014;158(2):412–421. doi:10.1016/j.cell.2014.06.034
  • Doroghazi JR, Albright JC, Goering AW, et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol. 2014;10(11):963–968. doi:10.1038/nchembio.1659
  • Dejong CA, Chen GM, Li H, et al. Polyketide and non-ribosomal peptide retro-biosynthesis and global gene cluster matching. Nat Chem Biol. 2016;12(12):1007–1014. doi:10.1038/nchembio.2188
  • Medema MH, Paalvast Y, Nguyen DD, et al. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput Biol. 2014;10(9):e1003822. doi:10.1371/journal.pcbi.1003822
  • Mohimani H, Kersten RD, Liu WT, et al. Automated genome mining of ribosomal peptide natural products. ACS Chem Biol. 2014;9(7):1545–1551. doi:10.1021/cb500199h
  • Shao Z, Rao G, Li C, et al. Refactoring the silent sectionalizing gene cluster using a plug-and-play scaffold. ACS Synth Biol. 2013;2(11):662–669. doi:10.1021/sb400058n
  • Yamanaka K, Reynolds KA, Kersten RD, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA. 2014;111(5):1957–1962. doi:10.1073/pnas.1319584111
  • Weber T, Blin K, Duddela S, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):237–243. doi:10.1093/nar/gkv437
  • van Heel AJ, de Jong A, Montalban-Lopez M, et al. BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal post-translationally modified peptides. Nucleic Acids Res. 2013;41(W1):448–453. doi:10.1093/nar/gkt391
  • Boddy CN. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol. 2014;41(2):443–450. doi:10.1007/s10295-013-1368-1
  • Medema MH, Fischbach MA. Computational approaches to natural product discovery. Nat Chem Biol. 2015;11(9):639–648. doi:10.1038/nchembio.1884
  • Pi B, Yu D, Dai F, et al. A Genomics Based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus. PLoS One. 2015;10(2):e0116089. doi:10.1371/journal.pone.0116089
  • Leikoski N, Liu L, Jokela J, et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem Biol. 2013;20(8):1033–1043. doi:10.1016/j.chembiol.2013.06.015
  • Cox CL, Doroghazi JR, Mitchell DA. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genomics. 2015;16(1):778. doi:10.1186/s12864-015-2008-0
  • Shen B, Yan X, Huang T, et al. Enediynes: exploration of microbial genomics to discover new anticancer drug leads. Bioorg Med Chem Lett. 2015;25:9–15. doi:10.1016/j.bmcl.2014.11.019
  • Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes—a review. Nat Prod Rep. 2016;33:988–1005. doi:10.1039/C6NP00025H
  • Ogawara H. Self-resistance in Streptomyces, with special reference to ß-lactam. Antibiotic Mol. 2016;21:605.
  • Tang X, Li J, Millan-Aguinaga N, et al. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. ACS Chem Biol. 2015;10(12):2841–2849. doi:10.1021/acschembio.5b00658
  • Yeh H, Ahuja M, Chiang Y, et al. Resistance gene-guided genome mining: serial promoter exchanges in Aspergillus nidulans reveal the biosynthetic pathway for fellutamide B, a proteasome inhibitor. ACS Chem Biol. 2016;11:22–75. doi:10.1021/acschembio.6b00213
  • Johnston CW, Skinnider MA, Dejong CA, et al. Assembly and clustering of natural antibiotics guides target identification. Nat Chem Biol. 2016;12(4):233–239. doi:10.1038/nchembio.2018
  • Clausen CA. Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res. 2000;18(3):264–268. doi:10.1034/j.1399-3070.2000
  • Kumar S, Tripathi VR, Garg SK. Physicochemical and microbiological assessment of recreational and drinking waters. Environ Monit Assess. 2012;184(5):2691–2698. doi:10.1007/s10661-011-2144-1
  • Cui L, Zhang YJ, Hurang WE, et al. Surface-enhanced Raman spectroscopy for identification of heavy metal arsenic (V)-mediated enhancing effect on antibiotic resistance. Anal Chem. 2016;10:44–90.
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016;45(D1):566–573. doi:10.1093/nar/gkw1004
  • Cruz-Morales P, Kopp JF, Martinez-Guerrero C, et al. Phylogenomic analysis of natural products biosynthetic gene clusters allow discovery of arseno-organic metabolites in model streptomycetes. Genome Biol Evol. 2016;8(6):1906–1916. doi:10.1093/gbe/evw125
  • Medema MH, Trefzer A, Kovalchuk A, et al. The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol. 2010;2:212–224. doi:10.1093/gbe/evq013
  • Suwa M, Sugino H, Sasaoka A, et al. Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene. 2000;246(1–2):123–131. doi:10.1016/S0378-1119(00)00060-3
  • Belousoff MJ, Shapira T, Bashan A, et al. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc Natl Acad Sci USA. 2011;108(7):2717. doi:10.1073/pnas.1019406108
  • Wolf T, Shelest V, Nath N, et al. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinformatics. 2016;32(8):1138–1143. doi:10.1093/bioinformatics/btv713
  • Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev. 2017;41(3):417–429. doi:10.1093/femsre/fux014
  • Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Global Health. 2013;9:48.
  • Zhang S, Abbas M, Rehman MU, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environ Pollut. 2020;266:1152–1160. doi:10.1016/j.envpol.2020.115260
  • Adesokan HK, Akanbi IO, Akanbi IM, Obaweda RA. Pattern of antimicrobial usage in livestock animals in south-western Nigeria: the need for alternative plans. Onderstepoort J Vet Res. 2015;82(1):816. doi:10.4102/ojvr.v82i1.816
  • Mainda G, Bessell PR, Muma JB, et al. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci Rep. 2015;5:124–139.
  • Donkor ES, Newman MJ, Yeboah-Manu D. Epidemiological aspects of non-human antibiotic usage and resistance: implications for the control of antibiotic resistance in Ghana. Trop Med Int Health. 2012;17(4):462–468. doi:10.1111/j.1365-3156.2012.02955.x
  • Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: a Review. Int J Mol Sci. 2021;22(18):1–18. doi:10.3390/ijms22189922
  • Adenipekum EO, Jackson CR, Oluwadun A, et al. Prevalence and antimicrobial resistance in Escherichia coli from food animals in Lagos, Nigeria. Microb Drug Resist. 2015;21:358–365. doi:10.1089/mdr.2014.0222
  • Chantziaras I, Boyen F, Callens B, Dewulf J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries. J Antimicrob Chemother. 2014;69(3):827–834. doi:10.1093/jac/dkt443
  • Luanda CM, Buza J, Mwanyika G, et al. Bacterial contamination of pork carcasses from Arusha, Tanzania. GJAR. 2016;3:806–817.
  • Odwar JA, Kikuvi G, Kariuki JN, Kariuki S. A cross-sectional study on the microbiological quality and safety of raw chicken meats sold in Nairobi, Kenya. BMC Res Notes. 2014;7(1):627. doi:10.1186/1756-0500-7-627
  • Mrutu R, Luanda C, Rugumisa B, et al. Detection of microbial surface contamination and antibiotic resistant Escherichia coli on beef carcasses in Arusha, Tanzania. Afr J Microbiol Res. 2016;10:1148–1155.
  • Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18:741–749. doi:10.3201/eid1805.111153
  • Alonso CA, Zarazaga M, Sallem RB, Jouini A, Slama BK, Torres C. Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Lett Appl Microbiol. 2017;64(5):318–334. doi:10.1111/lam.12724
  • Ben Sallem R, Ben Slama K, Saenz Y, et al. Prevalence and characterization of extended spectrum beta-lactamase (ESBL)- and CMY-2-producing Escherichia coli isolates from healthy food-producing animals in Tunisia. Foodborne Pathog Dis. 2012;9:1137–1142. doi:10.1089/fpd.2012.1267
  • Adelowo OO, Fagade OE, Agersø Y. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J Infect Dev Ctries. 2014;8:1103–1112
  • Grami R, Dahmen S, Mansour W, et al. blaCTX-M-15-carrying F2: a-: b- plasmid in Escherichia coli from cattle milk in Tunisia. Microb Drug Resist. 2014;20:344–349. doi:10.1089/mdr.2013.0160
  • Lebov J, Grieger K, Womack D, et al. A framework for One Health research. One Health. 2017;3:44–50. doi:10.1016/j.onehlt.2017.03.004
  • Wyrsch ER, Chowdhury PR, Jarocki VM, Brandis KJ, Djordjevic SP. Duplication and diversification of a unique chromosomal virulence island hosting the subtilase cytotoxin in Escherichia coli ST58. Microb Genom. 2020;6(6):e000387. doi:10.1099/mgen.0.000387
  • Al-Mustapha AI, Adetunji VO, Heikinheimo A. Risk perceptions of antibiotic usage and resistance: a cross-sectional survey of poultry farmers in Kwara State, Nigeria. Antibiotics. 2020;9(7):378. doi:10.3390/antibiotics9070378
  • Kumar S, Tripathi VR, Vikram S, Kumar B, Garg SK. Characterization of MAR and heavy metal-tolerant E. coli O157:H7 in water sources: a suggestion for behavioral intervention. Environ Dev Sustain. 2018;20(6):2447–2461. doi:10.1007/s10668-017-9998-5