278
Views
1
CrossRef citations to date
0
Altmetric
SHORT REPORT

Novel Pseudomonas aeruginosa Strains Co-Harbouring blaNDM-1 Metallo β-Lactamase and mcr-1 Isolated from Immunocompromised Paediatric Patients

, , , & ORCID Icon
Pages 2929-2936 | Published online: 08 Jun 2022

References

  • Winfried K, Jan R, Hartmut B, et al.; Hospital Infection Surveillance System for Patients With Hematologic/Oncologic Malignancies Study Group (ONKO-KISS). Contribution of specific pathogens to bloodstream infection mortality in neutropenic patients with hematologic malignancies: results from a multicentric surveillance cohort study. Transpl Infect Dis. 2019;21:e13186. doi:10.1111/tid.13186
  • Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117–2131. doi:10.1007/s40265-021-01635-6
  • Tofas P, Samarkos M, Piperaki ET, et al. Pseudomonas aeruginosa bacteraemia in patients with hematologic malignancies: risk factors, treatment and outcome. Diagn Microbiol Infect Dis. 2017;88(4):335–341. doi:10.1016/j.diagmicrobio.2017.05.003
  • Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed June 1, 2022.
  • Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15(4):939–948. doi:10.1038/s41396-020-00832-7
  • Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43–48. doi:10.1128/AAC.50.1.43-48.2006
  • Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031–e00019. doi:10.1128/CMR.00031-19
  • Mekonnen H, Seid A, Molla Fenta G, Gebrecherkos T. Antimicrobial resistance profiles and associated factors of Acinetobacter and Pseudomonas aeruginosa nosocomial infection among patients admitted at Dessie comprehensive specialized Hospital, North-East Ethiopia. A cross-sectional study. PLoS One. 2021;16(11):e0257272. doi:10.1371/journal.pone.0257272
  • Sandip P, Jiang M, Wen F. Molecular characterization of co-existence of MCR-1 and NDM-1 in extended-spectrum β-lactamase-producing Escherichia coli ST648 isolated from a colonized patient in China. Jundishapur J Microbiol. 2019;12(7):e91272.
  • Patil S, Liu X, Chen H, Francisco NM, Wen F, Chen Y. Genetic characterization of colistin-resistant Salmonella enterica ST34 Co-harbouring plasmid-Borne mcr-1, blaCTX-M-15 and blaKPC-2 recovered from a paediatric patient in Shenzhen, China. Infect Drug Resist. 2022;15:757–763. doi:10.2147/IDR.S349585
  • World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS): whole-genome sequencing for surveillance of antimicrobial resistance. Geneva: World Health Organization; 2020.
  • World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report. Geneva: World Health Organization; 2019.
  • Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242. doi:10.3389/fpubh.2019.00242
  • Picão R, Andrade S, Nicoletti A, et al. Metallo-beta-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol. 2008;46:2028–2037. doi:10.1128/JCM.00818-07
  • Patel JB, Cockerill FR, Bradford PA. M100-S25 performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement; 2015.
  • Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin - evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24(8):865–870. doi:10.1016/j.cmi.2017.11.020
  • Patil S, Chen H, Zhang X, Lian M, Ren PG, Wen F. Antimicrobial resistance and resistance determinant insights into multi-drug resistant gram-negative bacteria isolates from paediatric patients in China. Infect Drug Resist. 2019;12:3625–3634. doi:10.2147/IDR.S223736
  • Zhuoren L, Wenjuan Y, Zhangqi S, Yang W, Jianzhong S, Timothy W. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother. 2020;75(11):3087–3095. doi:10.1093/jac/dkaa205
  • Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–228. doi:10.1016/j.mimet.2005.03.018
  • Alvarado A, Garcillán-Barcia MP, de la Cruz F. A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS One. 2012;7(7):e40438. doi:10.1371/journal.pone.0040438
  • Raúl R, Jennifer V, Esther V, María Á, Jaime L, Fernando C. Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: facing the perfect storm. Int J Antimicrob Agents. 2018;52(2):172–179. doi:10.1016/j.ijantimicag.2018.03.018
  • Caselli E, D’Accolti M, Soffritti I, Piffanelli M, Mazzacane S. Spread of mcr-1-driven colistin resistance on hospital surfaces, Italy. Emerg Infect Dis. 2018;24(9):1752–1753. doi:10.3201/eid2409.171386
  • Usai D, Donadu M, Bua A, et al. Enhancement of antimicrobial activity of pump inhibitors associating drugs. J Infect Dev Ctries. 2019;13(2):162–164. doi:10.3855/jidc.11102
  • Zheng P, Renee R, Bernard R, Tong-Jun L, Zhenyu C. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192. doi:10.1016/j.biotechadv.2018.11.013
  • Hamed T, Sanaz D, Mohammad Reza A. Co-harboring of mcr-1 and β-lactamase genes in Pseudomonas aeruginosa by high-resolution melting curve analysis (HRMA): molecular typing of superbug strains in bloodstream infections (BSI). Infect Genet Evol. 2020;85:104518. doi:10.1016/j.meegid.2020.104518
  • Jovcic B, Zorica L, Vesna S, et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55(8):3929–3931. doi:10.1128/AAC.00226-11
  • Cecilia Q, Marcela N, JoséDi C. Current scenario of plasmid-mediated colistin resistance in Latin America. Rev Argent Microbio. 2019;51(1):93–100.
  • Lidia R, Alba B, Jessica B, et al. Pseudomonas aeruginosa Isolates from Spanish Children: occurrence in Faecal Samples, Antimicrobial Resistance, Virulence, and Molecular Typing. Biomed Res Int. 2018;2018:1–8.
  • Schwab F, Geffers C, Behnke M, Petra J. ICU mortality following ICU-acquired primary bloodstream infections according to the type of pathogen: a prospective cohort study in 937 Germany ICUs (2006–2015). PLoS One. 2018;13(3):1–13. doi:10.1371/journal.pone.0194210
  • Liu Z, Liu Y, Xi W, et al. Genetic features of plasmid- and chromosome-mediated mcr-1 in Escherichia coli isolates from animal organs with lesions. Front Microbiol. 2021;12:707332. doi:10.3389/fmicb.2021.707332
  • Michel D, Gauri G, Philip A, et al. Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J Antimicrob Chemother. 2016;71(8):2300–2305. doi:10.1093/jac/dkw093
  • Michael M, Laura M, James R, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2016;16(3):289–290. doi:10.1016/S1473-3099(16)00067-0
  • Gajdács M, Baráth Z, Kárpáti K, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics. 2021;10(9):1134. doi:10.3390/antibiotics