238
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Molecular Surveillance of Antimicrobial Resistance of Mycobacterium leprae from Leprosy Patients in Zhejiang Province, China

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 4029-4036 | Published online: 27 Jul 2022

References

  • World Health Organization = Organisation mondiale de la Santé. Global leprosy (Hansen disease) update, 2020: impact of COVID-19 on global leprosy control –Situation de la lèpre (maladie de Hansen) dans Le Monde, 2020: impact de la COVID-19 sur les activités mondiales de lutte contre la lèpre. Wkly Epidemiol Rec Relevé Épidémiologique Hebd. 2021;96(36):421–444.
  • World Health Organization. Chemotherapy of leprosy for control programmes. World Health Organ Tech Rep Ser. 1982;675(1–33):1–33.
  • Ramu G. Single-dose rifampicin, oflaxicin and minocycline (ROM) therapy for single leprosy lesions. Lepr Rev. 1998;69(1):78–82.
  • Fish DN. Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy. 2001;21(10 Pt 2):253S–272S. doi:10.1592/phco.21.16.253S.33993
  • Hooper DC. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis off Publ Infect Dis Soc Am. 2000;31(Suppl 2):S24–28. doi:10.1086/314056
  • Daniel E, Ebenezer GJ, Job CK. Pathology of iris in leprosy. Br J Ophthalmol. 1997;81(6):490–492. doi:10.1136/bjo.81.6.490
  • Sivaprasad N, Snehalatha S, Lobo D, Aschhoff M, Job CK. Viability of Mycobacterium leprae in lepromatous patients after five years of dapsone monotherapy supplemented with two years of multidrug therapy. Indian J Lepr. 1995;67(4):427–433.
  • Pearson JM, Rees RJ, Waters MF. Sulphone resistance in leprosy. A review of one hundred proven clinical cases. Lancet Lond Engl. 1975;2(7924):69–72. doi:10.1016/S0140-6736(75)90508-5
  • Cambau E, Carthagena L, Chauffour A, Ji B, Jarlier V. Dihydropteroate synthase mutations in the folP1 gene predict dapsone resistance in relapsed cases of leprosy. Clin Infect Dis. 2006;42(2):238–241. doi:10.1086/498506
  • Honore N, Cole ST. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993;37(3):414–418. doi:10.1128/AAC.37.3.414
  • Emmanuelle C, Bonnafous P, Evelyne P, Sougakoff W, Baohong J, Vincent J. Molecular detection of rifampin and ofloxacin resistance for patients who experience relapse of multibacillary leprosy. Clin Infect Dis. 2002;34(1):39–45. doi:10.1086/324623
  • Kai M, Fafutis-Morris M, Miyamoto Y, et al. Mutations in the drug resistance-determining region of Mycobacterium lepromatosis isolated from leprosy patients in Mexico. J Dermatol. 2016;43(11):1345–1349. doi:10.1111/1346-8138.13483
  • Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet. 2012;44(1):106–110. doi:10.1038/ng.1038
  • Benjak A, Avanzi C, Singh P, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9(1):352. doi:10.1038/s41467-017-02576-z
  • Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New insights into fluoroquinolone resistance in mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One. 2012;7(6):e39754. doi:10.1371/journal.pone.0039754
  • Wu L, Shen Y, Yao Q, et al. Temporal-spatial distribution characteristics of leprosy: a new challenge for leprosy prevention and control in Zhejiang, China. PLoS Negl Trop Dis. 2021;15(1):e0008956. doi:10.1371/journal.pntd.0008956
  • Gelber RH, Grosset J. The chemotherapy of leprosy: an interpretive history. Lepr Rev. 2012;83(3):221–240. doi:10.47276/lr.83.3.221
  • Faust L, Klowak M, MacRae C, Kopalakrishnan S, Showler AJ, Boggild AK. Ofloxacin-containing multidrug therapy in ambulatory leprosy patients: a case series. J Cutan Med Surg. 2021;25(1):45–52. doi:10.1177/1203475420952437
  • Balagon MF, Cellona RV, Abalos RM, Gelber RH, Saunderson PR. The efficacy of a four-week, ofloxacin-containing regimen compared with standard WHO-MDT in PB leprosy. Lepr Rev. 2010;81(1):27–33. doi:10.47276/lr.81.1.27
  • Lee SB, Kim SK, Kang TJ, et al. The prevalence of folP1 mutations associated with clinical resistance to dapsone, in Mycobacterium leprae isolates from South Korea. Ann Trop Med Parasitol. 2001;95(4):429–432. doi:10.1080/00034983.2001.11813656
  • Chokkakula S, Chen Z, Wang L, et al. Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae in Chinese leprosy patients. Emerg Microbes Infect. 2019;8(1):1479–1489. doi:10.1080/22221751.2019.1677177
  • Chauffour A, Morel F, Reibel F, et al. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect. 2021;27(11):1601–1612. doi:10.1016/j.cmi.2021.07.007
  • Jian-Ping S, Gupte MD, Cheng J, Manickam P, Meiwen Y, Zhong LW. Trends of case detection and other indicators of leprosy in China during 1985–2002. Chin Med Sci J Chung-Kuo Hsueh Ko Hsueh Tsa Chih. 2005;20(2):77–82.
  • Jing Z, Zhang R, Zhou D, Chen J. Twenty five years follow up of MB leprosy patients retreated with a modified MDT regimen after a full course of dapsone mono-therapy. Lepr Rev. 2009;80(2):170–176.
  • Avanzi C, Maia RC, Benjak A, et al. Emergence of mycobacterium leprae rifampin resistance evaluated by whole-genome sequencing after 48 years of irregular treatment. Antimicrob Agents Chemother. 2020;64(7):e00330–20. doi:10.1128/AAC.00330-20
  • Lavania M, Singh I, Turankar RP, et al. Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains. Infect Drug Resist. 2018;11:169–175. doi:10.2147/IDR.S152082
  • Pantel A, Petrella S, Veziris N, et al. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis. Antimicrob Agents Chemother. 2012;56(4):1990–1996. doi:10.1128/AAC.06272-11
  • Zharkov DO. Base excision DNA repair. Cell Mol Life Sci CMLS. 2008;65(10):1544–1565. doi:10.1007/s00018-008-7543-2
  • Moolla N, Goosens VJ, Kana BD, Gordhan BG. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis. DNA Repair. 2014;13:32–41. doi:10.1016/j.dnarep.2013.11.003
  • Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45(7):784–790. doi:10.1038/ng.2656
  • Shen J, Yan L, Sun P. Clinical features of relapse after multidrug therapy for leprosy in China. Lepr Rev. 2015;86(2):165–169. doi:10.47276/lr.86.2.165
  • Xiao YH, Wang J, Li Y; MOH National Antimicrobial Resistance Investigation Net. Bacterial resistance surveillance in China: a report from Mohnarin 2004–2005. Eur J Clin Microbiol Infect Dis off Publ Eur Soc Clin Microbiol. 2008;27(8):697–708. doi:10.1007/s10096-008-0494-6
  • Fontana C, Favaro M, Minelli S, et al. New site of modification of 23S rRNA associated with clarithromycin resistance of Helicobacter pylori clinical isolates. Antimicrob Agents Chemother. 2002;46(12):3765–3769. doi:10.1128/AAC.46.12.3765-3769.2002
  • De Francesco V, Zullo A, Giorgio F, et al. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy. J Med Microbiol. 2014;63(Pt 3):453–457. doi:10.1099/jmm.0.067942-0
  • Gunawan H, Sasmojo M, Putri HE, Avriyanti E, Hindritiani R, Suwarsa O. Clinical pilot study: clarithromycin efficacy in multibacillary leprosy therapy. Int J Mycobacteriology. 2018;7(2):152–155. doi:10.4103/ijmy.ijmy_58_18
  • Lockwood DN, Reid AJ. The diagnosis of leprosy is delayed in the United Kingdom. QJM Mon J Assoc Physicians. 2001;94(4):207–212. doi:10.1093/qjmed/94.4.207