192
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bioprospecting by Phage Display of Mimetic Peptides of Chlamydia trachomatis for Use in Laboratory Diagnosis

, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 4935-4945 | Published online: 30 Aug 2022

References

  • Schachter J, Caldwell HD. Chlamydiae. Annu Rev Microbiol. 1980;34:285–309. doi:10.1146/annurev.mi.34.100180.001441
  • Weinstock H, Dean D, Bolan G. Chlamydia trachomatis infection. Infect Dis Clin North Am. 1994;8:797–819.
  • Inman RD, Whittum-Hudson JA, Schumacher HR, Hudson AP. Chlamydia and associated arthritis. Curr Opin Rheumatol. 2000;12:254–262. doi:10.1097/00002281-200007000-00004
  • Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. Chlamydia trachomatis: the Persistent Pathogen. Clin Vaccine Immunol. 2017;24(10):e00203–17. doi:10.1128/CVI.00203-17
  • den Heijer CDJ, Hoebe CJPA, Driessen JHM, et al. Chlamydia trachomatis and the Risk of Pelvic Inflammatory Disease, Ectopic Pregnancy, and Female Infertility: a Retrospective Cohort Study Among Primary Care Patients. Clin Infect Dis. 2019;69(9):1517–1525. doi:10.1093/cid/ciz429
  • World Health Organization. Sexually transmitted infections; 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis). Accessed December 12, 2021.
  • Matsumoto A. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J Bacteriol. 1982;150(1):358–364. doi:10.1128/jb.150.1.358-364.1982
  • Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29:949–959. doi:10.1016/j.femsre.2005.03.002
  • Moulder JW. The relation of the psittacosis group (Chlamydiae) to bacteria and viruses. Annu Rev Microbiol. 1966;20:107–130. doi:10.1146/annurev.mi.20.100166.000543
  • Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol. 2016;14(6):385–400. doi:10.1038/nrmicro.2016.30
  • Solomon AW, Peeling RW, Foster A, Mabey DCW. Diagnosis and Assessment of Trachoma. Clin Microbiol Rev. 2004;17(4):982–1011. doi:10.1128/CMR.17.4.982-1011.2004
  • Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981;31(3):1161–1176. doi:10.1128/iai.31.3.1161-1176.1981
  • Hatch TP, Miceli M, Sublett JE. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J Bacteriol. 1986;165(2):379–385. doi:10.1128/jb.165.2.379-385.1986
  • Stephens RS, Sanchez-Pescador R, Wagar EA. Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol. 1987;169(9):3879–3885. doi:10.1128/jb.169.9.3879-3885.1987
  • Morré SA, Ossewaarde JM, Lan J, et al. Serotyping and Genotyping of Genital Chlamydia trachomatis Isolates Reveal Variants of Serovars Ba, G, and J as Confirmed by omp1 Nucleotide Sequence Analysis. J Clin Microbiol. 1998;36(2):345–351. doi:10.1128/JCM.36.2.345-351
  • Kari L, Whitmire WM, Crane DD, et al. Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine. J Immunol. 2009;182(12):8063–8070. doi:10.4049/jimmunol.0804375
  • Kariagina AS, Alekseevskiĭ AV, Spirin SA, Zigangirova NA, Gintsburg AL. Effector proteins of Chlamydia. Mol Biol (Mosk). 2009;43(6):963–983.
  • Treharne JD, Forsey T, Thomas BJ. Chlamydial serology. Br Med Bull. 1983;39(2):194–200. doi:10.1093/oxfordjournals.bmb.a071815
  • Ozanne G, Lefebvre J. Specificity of the microimmunofluorescence assay for the serodiagnosis of Chlamydia pneumoniae infections. Can J Microbiol. 1992;38(11):1185–1189. doi:10.1139/m92-194
  • Herkenhoff ME, Gaulke R, Vieira LL, Ferreira OS, Pitlovanciv AK, Remualdo VR. Prevalência de Chlamydia trachomathis em amostras endocervicais de mulheres em São Paulo e Santa Catarina pela PCR. J Bras Patol Med Lab. 2012;48(5):323–327. doi:10.1590/S1676-24442012000500004
  • Brasil. Ministério da Saúde. Diagnóstico Laboratorial da Clamídia; 1997. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/cd05_09.pdf. Accessed May 17, 2022.
  • Black CM. Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin Microbiol Rev. 1997;10(1):160–184. doi:10.1128/CMR.10.1.160
  • Hamdad F, Orfila J, Boulanger JC, Eb F. Chlamydia trachomatis urogenital infections in women. Best diagnostic approaches. Gynecol Obstet Fertil. 2004;32(12):1064–1074. doi:10.1016/j.gyobfe.2004.10.017
  • Jackson B. Relative cost-effectiveness of different tests for Chlamydia trachomatis. Ann Intern Med. 2005;142(4):308. doi:10.7326/0003-4819-142-4-200502150-00019
  • Persson K. The role of serology, antibiotic susceptibility testing and serovar determination in genital chlamydial infections. Best Pract Res Clin Obstet Gynaecol. 2002;16(6):801–814. doi:10.1053/beog.2002.0321
  • Johnson AM, Horner P. A new role for Chlamydia trachomatis serology? Sex Transm Infect. 2008;84(2):79–80. doi:10.1136/sti.2007.028472
  • Ishak M, Costa MM, Almeida NC, et al. Chlamydia trachomatis serotype A infections in the Amazon region of Brazil: prevalence, entry and dissemination. Rev Soc Bras Med Trop. 2015;48(2):170–174. doi:10.1590/0037-8682-0038-2015
  • Ferreira GRON, Freitas FB, Queiroz MAF, et al. Epidemiology and risk factors for Chlamydia trachomatis, Treponema pallidum, Hepatitis B Virus and Hepatitis C Virus in the Marajó Archipelago, Brazilian Amazon. J Community Med Health Educ. 2019;9:643. doi:10.4172/2161-0711.1000643
  • Rahman KS, Kaltenboeck B. Multipeptide assays for sensitive and differential detection of anti-chlamydia trachomatis antibodies. J Infect Dis. 2021;224(12 Suppl 2):S86–S95. doi:10.1093/infdis/jiab016
  • Rahman KS, Darville T, Russell AN, et al. Discovery of Human-Specific Immunodominant Chlamydia trachomatis B Cell Epitopes. mSphere. 2018;3(4):e00246–18. doi:10.1128/mSphere.00246-18
  • Smith GP, Petrenko VA. Phage Display. Chem Rev. 1997;97(2):391–410. doi:10.1021/cr960065d
  • Arap MA. Phage display technology – applications and innovations. Genet Mol Biol. 2005;28(1):1–9. doi:10.1590/S1415-47572005000100001
  • Silva JRA, Kawazoe U. Avian anticoccidial activity of a novel membrane interactive peptide selected from phage display libraries. Mol Biochem Parasitol. 2002;120(1):53–60. doi:10.1016/s0166-6851(01
  • Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv. 2010;28(6):849–858. doi:10.1016/j.biotechadv.2010.07.004
  • Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv. 2018;36(7):1847–1854. doi:10.1016/j.biotechadv.2018.07.003
  • Martins IM, Reis RL, Azevedo HS. Phage Display Technology in Biomaterials Engineering: progress and Opportunities for Applications in Regenerative Medicine. ACS Chem Biol. 2016;11:2962–2980. doi:10.1021/acschembio.5b00717
  • Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019;10(11):787–807. doi:10.1007/s13238-019-0639-7
  • Portes LDS, Kioshima ES, de Camargo ZP, Batista WL, Xander P. Subtractive phage display selection for screening and identification of peptide sequences with potential use in serodiagnosis of paracoccidioidomycosis caused by Paracoccidioides brasiliensis. Lett Appl Microbiol. 2017;65(5):346–353. doi:10.1111/lam.12788
  • Moreira GMSG, Köllner SMS, Helmsing S, et al. Pyruvate dehydrogenase complex-enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies. Sci Rep. 2020;10(1):15267. doi:10.1038/s41598-020-72159-4
  • Barbas CF, Burto DR, Scott JK, Silverino GJ. Phage Display: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press; 2001.
  • Scheurwater E, Reid CW, Clarke AJ. Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2008;40(4):586–591. doi:10.1016/j.biocel.2007.03.018
  • Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol. 2019;10:331. doi:10.3389/fmicb.2019.00331
  • Paoletti L, Lu YJ, Schujman GE, de Mendoza D, Rock CO. Coupling of fatty acid and phospholipid synthesis in Bacillus subtilis. J Bacteriol. 2007;189(16):5816–5824. doi:10.1128/JB.00602-07
  • Lu YJ, Zhang F, Grimes KD, Lee RE, Rock CO. Topology and active site of PlsY: the bacterial acylphosphate: glycerol-3-phosphateacyltransferase. J Biol Chem. 2007;282(15):11339–11346. doi:10.1074/jbc.M700374200
  • Yang M, Rajeeve K, Rudel T, Dandekar T. Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection. Front Microbiol. 2019;10:2350. doi:10.3389/fmicb.2019.02350
  • Fan C, Wu YH, Decker CM, et al. Defensive Function of Transposable Elements in Bacteria. ACS Synth Biol. 2019;8(9):2141–2151. doi:10.1021/acssynbio.9b00218
  • O’Neill CE, Skilton RJ, Forster J, et al. An inducible transposon mutagenesis approach for the intracellular human pathogen Chlamydia trachomatis. Wellcome Open Res. 2021;6:312. doi:10.12688/wellcomeopenres
  • Du K, Fuyan Wang F, Wang ZHJ, Cheng W, Li M, Yu P. Localization and Characterization of GTP-Binding Protein CT703 in the Chlamydia trachomatis-Infected Cells. Curr Microbiol. 2011;62(2):465–471. doi:10.1007/s00284-010-9730-2
  • Huang Z, Feng Y, Chen D, et al. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe. 2008;4(6):529–542. doi:10.1016/j.chom.2008.10.005
  • Chen AL, Johnson KA, Lee JK, Sütterlin C, Tan M. CPAF: a Chlamydial protease in search of an authentic substrate. PLoS Pathog. 2012;8(8):e1002842. doi:10.1371/journal.ppat.1002842
  • Dong F, Sharma J, Xiao Y, Zhong Y, Zhong G. Intramolecular dimerization is required for the chlamydia-secreted protease CPAF to degrade host transcriptional factors. Infect Immun. 2004;72(7):3869–3875. doi:10.1128/IAI.72.7.3869-3875.2004
  • Paschen SA, Christian JG, Vier J, et al. Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J Cell Biol. 2008;182(1):117–127. doi:10.1083/jcb.200804023
  • Snavely EA, Kokes M, Dunn JD, et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis. 2014;71(3):336–351. doi:10.1111/2049-632X.12179
  • Patton MJ, McCorrister S, Grant C, et al. Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation. mBio. 2016;7(5):e01427–16. doi:10.1128/mBio.01427-16
  • Dong F, Zhong Y, Arulanandam B, Zhong G. Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun. 2005;73(3):1868–1872. doi:10.1128/IAI.73.3.1868-1872.2005
  • Larralde O, Petrik J. Phage-displayed peptides that mimic epitopes of hepatitis E virus capsid. Med Microbiol Immunol. 2017;206(4):301–309. doi:10.1007/s00430-017-0507-0
  • Wang L, Deng X, Liu H, et al. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis. Pathog Dis. 2016;74(8):ftw091. doi:10.1093/femspd/ftw091
  • Feliciano ND, Ribeiro VS, Gonzaga HT, et al. Short epitope-based synthetic peptides for serodiagnosis of human strongyloidiasis. Immunol Lett. 2016;172:89–93. doi:10.1016/j.imlet.2016.03.002
  • Lindquist EA, Marks JD, Kleba BJ, Sthens RS. Phage-display antibody detection of Chlamydia trachomatis-associated antigens. Microbiology. 2002;148(Pt 2):443–451. doi:10.1099/00221287-148-2-443
  • Franco GM, Rocha AS, Cox LJ, et al. Multi-Epitope Protein as a Tool of Serological Diagnostic Development for HTLV-1 and HTLV-2 Infections. Front Public Health. 2022;10:884701. doi:10.3389/fpubh.2022.884701
  • Li W, Murthy AK, Guentzel MN, et al. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol. 2008;180(5):3375–3382. doi:10.4049/jimmunol.180.5.3375