138
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Lack of Correlation Between Soluble Angiotensin-Converting Enzyme 2 and Inflammatory Markers in Hospitalized COVID-19 Patients with Hypertension

ORCID Icon, , &
Pages 4799-4807 | Published online: 24 Aug 2022

References

  • World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int. Accessed July 27, 2022.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239–1242. doi:10.1001/jama.2020.2648
  • Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323(18):1775–1776. doi:10.1001/jama.2020.4683
  • Ng WH, Tipih T, Makoah NA, et al. Comorbidities in SARS-CoV-2 patients: a systematic review and meta-analysis. mBio. 2021;12(1). doi:10.1128/mBio.03647-20
  • Bajgain KT, Badal S, Bajgain BB, Santana MJ. Prevalence of comorbidities among individuals with COVID-19: a rapid review of current literature. Am J Infect Control. 2021;49(2):238–246. doi:10.1016/j.ajic.2020.06.213
  • Saba L, Gerosa C, Fanni D, et al. Molecular pathways triggered by COVID-19 in different organs: ACE2 receptor-expressing cells under attack? A review. Eur Rev Med Pharmacol Sci. 2020;24(23):12609–12622. doi:10.26355/eurrev_202012_24058
  • Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) is a key modulator of the renin-angiotensin system in health and disease. Int J Pept. 2012;2012:256294. doi:10.1155/2012/256294
  • Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther. 2021;221:107750. doi:10.1016/j.pharmthera.2020.107750
  • Epelman S, Shrestha K, Troughton RW, et al. Soluble angiotensin-converting enzyme 2 in human heart failure: relation with myocardial function and clinical outcomes. J Card Fail. 2009;15(7):565–571. doi:10.1016/j.cardfail.2009.01.014
  • Epelman S, Tang WH, Chen SY, Van Lente F, Francis GS, Sen S. Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol. 2008;52(9):750–754. doi:10.1016/j.jacc.2008.02.088
  • Loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283:103548. doi:10.1016/j.resp.2020.103548
  • Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: molecular mechanisms and implications. Inflammation. 2021;44(1):13–34. doi:10.1007/s10753-020-01337-3
  • Bitker L, Burrell LM. Classic and nonclassic renin-angiotensin systems in the critically Ill. Crit Care Clin. 2019;35(2):213–227. doi:10.1016/j.ccc.2018.11.002
  • Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin–angiotensin–aldosterone system blockers and the risk of Covid-19. New Engl J Med. 2020;382(25):2431–2440. doi:10.1056/NEJMoa2006923
  • Reynolds HR, Adhikari S, Pulgarin C, et al. Renin–angiotensin–aldosterone system inhibitors and risk of covid-19. New Engl J Med. 2020;382(25):2441–2448. doi:10.1056/NEJMoa2008975
  • Park J, Lee S-H, You SC, Kim J, Yang K. Effect of renin-angiotensin-aldosterone system inhibitors on Covid-19 patients in Korea. PLoS One. 2021;16(3):e0248058. doi:10.1371/journal.pone.0248058
  • Lopes RD, Macedo AVS, de Barros ES, et al. Effect of discontinuing vs. continuing angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: a Randomized Clinical Trial. JAMA. 2021;325(3):254–264. doi:10.1001/jama.2020.25864
  • Bauer A, Schreinlechner M, Sappler N, et al. Discontinuation versus continuation of renin-angiotensin-system inhibitors in COVID-19 (ACEI-COVID): a prospective, parallel-group, randomized, controlled, open-label trial. Lancet Respir Med. 2021;9(8):863–872. doi:10.1016/S2213-2600(21)00214-9
  • Wu C, Qu G, Wang L, et al. Clinical characteristics and inflammatory immune responses in COVID-19 patients with hypertension: a retrospective study. Front Pharmacol. 2021;12:2333. doi:10.3389/fphar.2021.721769
  • Semenzato L, Botton J, Drouin J, et al. Antihypertensive drugs and COVID-19 risk. Hypertension. 2021;77(3):833–842. doi:10.1161/HYPERTENSIONAHA.120.16314
  • Kumar A, Narayan RK, Prasoon P, et al. COVID-19 mechanisms in the human body-what we know so far. Front Immunol. 2021;12:693938. doi:10.3389/fimmu.2021.693938
  • Lundström A, Ziegler L, Havervall S, et al. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol. 2021;93(10):5908–5916. doi:10.1002/jmv.27144
  • Negida A. Sample size calculation guide - Part 7: how to calculate the sample size based on a correlation. Adv J Emerg Med. 2020;4(2):e34–e34. doi:10.22114/ajem.v0i0.344
  • Olbei M, Hautefort I, Modos D, et al. SARS-CoV-2 causes a different cytokine response compared to other cytokine storm-causing respiratory viruses in severely ill patients. Front Immunol. 2021;12:629193. doi:10.3389/fimmu.2021.629193
  • Hofmann H, Geier M, Marzi A, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin-converting enzyme 2, and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319(4):1216–1221. doi:10.1016/j.bbrc.2004.05.114
  • Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913.e907. doi:10.1016/j.cell.2020.04.004
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e1019. doi:10.1016/j.cell.2020.04.035
  • Osman IO, Melenotte C, Brouqui P, et al. Expression of ACE2, soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1–7) is modulated in COVID-19 patients. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.625732
  • Onabajo OO, Banday AR, Stanifer ML, et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Gen. 2020;52(12):1283–1293. doi:10.1038/s41588-020-00731-9
  • Bank S, De SK, Bankura B, Maiti S, Das M. ACE/ACE2 balance might be instrumental to explain the certain comorbidities leading to severe COVID-19 cases. Biosci Rep. 2021;41(2). doi:10.1042/BSR20202014
  • Ferrara F, Vitiello A. Scientific hypothesis for treatment of COVID-19ʹs lung lesions by adjusting ACE/ACE2 imbalance. Cardiovasc Toxicol. 2021;21(6):498–503. doi:10.1007/s12012-021-09649-y
  • Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. doi:10.1056/NEJMsr2005760
  • Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics. 2020;10(16):7448–7464. doi:10.7150/thno.48076
  • Abassi Z, Higazi AAR, Kinaneh S, Armaly Z, Skorecki K, Heyman SN. ACE2, COVID-19 infection, inflammation, and coagulopathy: missing pieces in the puzzle. Front Physiol. 2020;11. doi:10.3389/fphys.2020.574753
  • Sang ER, Tian Y, Miller LC, Sang Y. Epigenetic evolution of ACE2 and IL-6 genes: non-canonical interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates. Genes. 2021;12(2):154. doi:10.3390/genes12020154
  • Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog. 2020;16(12):e1009128. doi:10.1371/journal.ppat.1009128
  • Albini A, Calabrone L, Carlini V, et al. Preliminary evidence for IL-10-induced ACE2 mRNA expression in lung-derived and endothelial cells: implications for SARS-Cov-2 ARDS pathogenesis. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.718136
  • Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130. doi:10.1080/22221751.2020.1770129
  • Dhar SK, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon. 2021;7(2):e06155. doi:10.1016/j.heliyon.2021.e06155
  • Luporini RL, Rodolpho JMA, Kubota LT, et al. IL-6 and IL-10 are associated with disease severity and higher comorbidity in adults with COVID-19. Cytokine. 2021;143:155507. doi:10.1016/j.cyto.2021.155507
  • Udomsinprasert W, Jittikoon J, Sangroongruangsri S, Chaikledkaew U. Circulating levels of Interleukin-6 and Interleukin-10, but not tumor necrosis factor-alpha, as potential biomarkers of severity and mortality for COVID-19: systematic review with meta-analysis. J Clin Immunol. 2021;41(1):11–22. doi:10.1007/s10875-020-00899-z
  • Gormez S, Ekicibasi E, Degirmencioglu A, et al. Association between renin–angiotensin–aldosterone system inhibitor treatment, neutrophil–lymphocyte ratio, D-Dimer and clinical severity of COVID-19 in hospitalized patients: a multicenter, observational study. J Human Hypertens. 2021;35(7):588–597. doi:10.1038/s41371-020-00405-3
  • Yang G, Tan Z, Zhou L, et al. Effects of Angiotensin II receptor blockers and ACE (Angiotensin-Converting Enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension. Hypertension. 2020;76(1):51–58. doi:10.1161/HYPERTENSIONAHA.120.15143
  • Lee SJ, Kim T, Cho WH, Jeon D, Lim S. Possible benefit of Angiotensin II receptor blockers in COVID-19 patients: a case series. J Renin-Angiotensin-Aldosterone Syst. 2021;2021:9951540. doi:10.1155/2021/9951540
  • Ahnach M, Zbiri S, Nejjari S, Ousti F, Elkettani C. C-reactive protein as an early predictor of COVID-19 severity. J Med Biochem. 2020;39(4):500–507. doi:10.5937/jomb0-27554
  • Sadeghi-Haddad-Zavareh M, Bayani M, Shokri M, et al. C-Reactive protein as a prognostic indicator in COVID-19 patients. Interdiscip Perspect Infect Dis. 2021;2021:5557582. doi:10.1155/2021/5557582
  • Gopalan N, Senthil S, Prabakar NL, et al. Predictors of mortality among hospitalized COVID-19 patients and risk score formulation for prioritizing tertiary care—An experience from South India. PLoS One. 2022;17(2):e0263471. doi:10.1371/journal.pone.0263471
  • de Jong VMT, Rousset RZ, Antonio-Villa NE, et al. Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. Br Med J. 2022;378:e069881. doi:10.1136/bmj-2021-069881
  • Lim MA, Pranata R. Worrying situation regarding the use of dexamethasone for COVID-19. Ther Adv Respir Dis. 2020;14:1753466620942131. doi:10.1177/1753466620942131
  • El-Saber Batiha G, Al-Gareeb AI, Saad HM, Al-Kuraishy HM. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology. 2022;30(4):1189–1205. doi:10.1007/s10787-022-00987-z
  • Ikeda S, Misumi T, Izumi S, et al. Corticosteroids for hospitalized patients with mild to critically-ill COVID-19: a multicenter, retrospective, propensity score-matched study. Sci Rep. 2021;11(1):10727. doi:10.1038/s41598-021-90246-y
  • Berton AM, Prencipe N, Giordano R, Ghigo E, Grottoli S. Systemic steroids in patients with COVID-19: pros and contras, an endocrinological point of view. J Endocrinol Invest. 2021;44(4):873–875. doi:10.1007/s40618-020-01325-2
  • Souza-Silva GA, Aquino RCA, Sousa GF, et al. Memory elicitation, T-cell response and antibody production: an independent study of an inactivated entire virus vaccine (Coronavac). An Acad Bras Cienc. 2022;94(3):e20211590. doi:10.1590/0001-3765202220211590
  • Szabó GT, Mahiny AJ, Vlatkovic I. COVID-19 mRNA vaccines: platforms and current developments. Mol Ther. 2022;30(5):1850–1868. doi:10.1016/j.ymthe.2022.02.016