146
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Novel Insight of Transcription Factor PtrA on Pathogenicity and Carbapenems Resistance in Pseudomonas aeruginosa

, , , , , , , , , & ORCID Icon show all
Pages 4213-4227 | Published online: 04 Aug 2022

References

  • Chandler CE, Horspool AM, Hill PJ., et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201(5). doi:10.1128/JB.00595-18
  • Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171(11):1209–1223. doi:10.1164/rccm.200408-1044SO
  • Kipnis E, Sawa T, Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Med Mal Infect. 2006;36(2):78–91. doi:10.1016/j.medmal.2005.10.007
  • Beasley KL, Cristy SA, Elmassry MM, Dzvova N, Colmer-Hamood JA, Hamood AN. During bacteremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those involved in quorum sensing. PLoS One. 2020;15(10):e0240351. doi:10.1371/journal.pone.0240351
  • Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol. 2003;6(1):56–60. doi:10.1016/s1369-5274(03)00008-0
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192. doi:10.1016/j.biotechadv.2018.11.013
  • Shah N, Klaponski N, Selin C, et al. PtrA is functionally intertwined with GacS in regulating the biocontrol activity of Pseudomonas chlororaphis PA23. Front Microbiol. 2016;7:1512. doi:10.3389/fmicb.2016.01512
  • McCarthy RR, Mooij MJ, Reen FJ, Lesouhaitier O, O’Gara F. A new regulator of pathogenicity (bvlR) is required for full virulence and tight microcolony formation in Pseudomonas aeruginosa. Microbiology. 2014;160(Pt 7):1488–1500. doi:10.1099/mic.0.075291-0
  • Reen FJ, Haynes JM, Mooij MJ, O’Gara F. A non-classical LysR-type transcriptional regulator PA2206 is required for an effective oxidative stress response in Pseudomonas aeruginosa. PLoS One. 2013;8(1):e54479. doi:10.1371/journal.pone.0054479
  • Bergeron JR, Fernandez L, Wasney GA, et al. The structure of a Type 3 Secretion System (T3SS) ruler protein suggests a molecular mechanism for needle length sensing. J Biol Chem. 2016;291(4):1676–1691. doi:10.1074/jbc.M115.684423
  • Sarges E, Rodrigues YC, Furlaneto IP, et al. Pseudomonas aeruginosa Type III secretion system virulotypes and their association with clinical features of cystic fibrosis patients. Infect Drug Resist. 2020;13:3771–3781. doi:10.2147/IDR.S273759
  • Shrestha M, Bernhards RC, Fu Y, Ryan K, Schubot FD. Backbone interactions between transcriptional activator ExsA and anti-activator ExsD facilitate regulation of the Type III secretion system in Pseudomonas aeruginosa. Sci Rep. 2020;10(1):9881. doi:10.1038/s41598-020-66555-z
  • Xu X, Yu H, Zhang D, et al. Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. Microbiol Res. 2016;192:84–95. doi:10.1016/j.micres.2016.06.005
  • Roy-Burman A, Savel RH, Racine S, et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 2001;183(12):1767–1774. doi:10.1086/320737
  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell. 2004;7(5):745–754. doi:10.1016/j.devcel.2004.08.020
  • Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2018;41:15–20. doi:10.1016/j.mib.2017.11.006
  • Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev. 2016;40(1):86–116. doi:10.1093/femsre/fuv038
  • Hnamte S, Parasuraman P, Ranganathan S, et al. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: in vitro, in vivo and in silico approach. Microb Pathog. 2019;131:128–134. doi:10.1016/j.micpath.2019.04.005
  • Soto-Aceves MP, Cocotl-Yanez M, Servin-Gonzalez L, Soberon-Chavez G. The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol. 2021;203(5). doi:10.1128/JB.00475-20
  • Tonkin M, Khan S, Wani MY, Ahmad A. Quorum Sensing - A stratagem for conquering multi-drug resistant pathogens. Curr Pharm Des. 2020. doi:10.2174/1381612826666201210105638
  • Lesic B, Starkey M, He J, Hazan R, Rahme LG. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology. 2009;155(Pt 9):2845–2855. doi:10.1099/mic.0.029082-0
  • Hogardt M, Roeder M, Schreff AM, Eberl L, Heesemann J. Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology. 2004;150(Pt 4):843–851. doi:10.1099/mic.0.26703-0
  • Bleves S, Soscia C, Nogueira-Orlandi P, Lazdunski A, Filloux A. Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J Bacteriol. 2005;187(11):3898–3902. doi:10.1128/JB.187.11.3898-3902.2005
  • Sana TG, Hachani A, Bucior I, et al. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem. 2012;287(32):27095–27105. doi:10.1074/jbc.M112.376368
  • Lotfy WA, Atalla RG, Sabra WA, El-Helow ER. Expression of extracellular polysaccharides and proteins by clinical isolates of Pseudomonas aeruginosa in response to environmental conditions. Int Microbiol. 2018;21(3):129–142. doi:10.1007/s10123-018-0010-5
  • Sleiman A, Fayad AGA, Banna H, Matar GM. Prevalence and molecular epidemiology of carbapenem-resistant Gram-negative bacilli and their resistance determinants in the Eastern Mediterranean Region over the last decade. J Glob Antimicrob Resist. 2021;25:209–221. doi:10.1016/j.jgar.2021.02.033
  • Li K, Yang G, Debru AB, et al. SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling. Front Microbiol. 2017;8:1045. doi:10.3389/fmicb.2017.01045
  • Liang R, Liu J. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions. BMC Microbiol. 2010;10:209. doi:10.1186/1471-2180-10-209
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi:10.1186/gb-2010-11-10-r106
  • Yang R, Guan Y, Zhou J, et al. Phytochemicals from camellia nitidissima chi flowers reduce the pyocyanin production and motility of Pseudomonas aeruginosa PAO1. Front Microbiol. 2017;8:2640. doi:10.3389/fmicb.2017.02640
  • Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol. 2001;183(18):5213–5222. doi:10.1128/JB.183.18.5213-5222.2001
  • Wretlind B, Pavlovskis OR. Genetic mapping and characterization of Pseudomonas aeruginosa mutants defective in the formation of extracellular proteins. J Bacteriol. 1984;158(3):801–808. doi:10.1128/jb.158.3.801-808.1984
  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A. 2013;110(44):17981–17986. doi:10.1073/pnas.1316981110
  • Xiao S, Suo W, Zhang J, et al. MgaSpn is a negative regulator of capsule and phosphorylcholine biosynthesis and influences the virulence of Streptococcus pneumoniae D39. Virulence. 2021;12(1):2366–22381. doi:10.1080/21505594.2021.1972539
  • Li W, Jiang L, Liu X, et al. YhjC is a novel transcriptional regulator required for Shigella flexneri virulence. Virulence. 2021;12(1):1661–1671. doi:10.1080/21505594.2021.1936767
  • Wang X, Xu H, Wang Y, et al. Systematic evaluation of potential pathogenicity of Salmonella Indiana. Vet Microbiol. 2020;247:108759. doi:10.1016/j.vetmic.2020.108759
  • Feldman M, Bryan R, Rajan S, et al. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun. 1998;66(1):43–51. doi:10.1128/IAI.66.1.43-51.1998
  • Jain M, Ramirez D, Seshadri R, et al. Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol. 2004;42(11):5229–5237. doi:10.1128/JCM.42.11.5229-5237.2004
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051–1060. doi:10.1016/s1286-4579(00)01259-4
  • Klockgether J, Tummler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res. 2017;6:1261. doi:10.12688/f1000research.10506.1
  • Ha UH, Kim J, Badrane H, et al. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol. 2004;54(2):307–320. doi:10.1111/j.1365-2958.2004.04282.x
  • Elsen S, Ragno M, Attree I. PtrA is a periplasmic protein involved in Cu tolerance in Pseudomonas aeruginosa. J Bacteriol. 2011;193(13):3376–3378. doi:10.1128/JB.00159-11
  • Diaz MR, King JM, Yahr TL. Intrinsic and extrinsic regulation of Type III secretion gene expression in Pseudomonas aeruginosa. Front Microbiol. 2011;2:89. doi:10.3389/fmicb.2011.00089
  • Janssen KH, Corley JM, Djapgne L, et al. Hfq and sRNA 179 inhibit expression of the Pseudomonas aeruginosa cAMP-Vfr and Type III secretion regulons. mBio. 2020;11(3). doi:10.1128/mBio.00363-20
  • Mulcahy H, O’Callaghan J, O’Grady EP, Adams C, O’Gara F. The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect Immun. 2006;74(5):3012–3015. doi:10.1128/IAI.74.5.3012-3015.2006
  • Kong W, Dong M, Yan R, et al. A unique ATPase, ArtR (PA4595), represses the Type III secretion system in Pseudomonas aeruginosa. Front Microbiol. 2019;10:560. doi:10.3389/fmicb.2019.00560
  • Lee J, Wu J, Deng Y, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339–343. doi:10.1038/nchembio.1225
  • Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol. 2002;184(17):4912–4919. doi:10.1128/JB.184.17.4912-4919.2002
  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol. 2003;50(1):29–43. doi:10.1046/j.1365-2958.2003.03672.x
  • Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN modulates carbapenem tolerance in pseudomonas aeruginosa through pseudomonas quinolone signal and PqsE. Antimicrob Agents Chemother. 2016;60(10):5752–5764. doi:10.1128/AAC.00260-16
  • Pu J, Zhang S, He X, et al. The small RNA AmiL regulates quorum sensing-mediated virulence in Pseudomonas aeruginosa PAO1. Microbiol Spectr. 2022;10:e0221121. doi:10.1128/spectrum.02211-21
  • Yan R, Hu S, Ma N, et al. Regulatory effect of DNA topoisomerase I on T3SS activity, antibiotic susceptibility and quorum- sensing-independent pyocyanin synthesis in Pseudomonas aeruginosa. Int J Mol Sci. 2019;20(5):1116. doi:10.3390/ijms20051116
  • Wang B, Duan J, Jin Y, et al. Functional insights of MraZ on the pathogenicity of Staphylococcus aureus. Infect Drug Resist. 2021;14:4539–4551. doi:10.2147/IDR.S332777
  • Rodrigue A, Quentin Y, Lazdunski A, Mejean V, Foglino M. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol. 2000;8(11):498–504. doi:10.1016/s0966-842x(00)01833-3
  • Gooderham WJ, Hancock RE. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev. 2009;33(2):279–294. doi:10.1111/j.1574-6976.2008.00135.x
  • Mesaros N, Glupczynski Y, Avrain L, Caceres NE, Tulkens PM, Van Bambeke F. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa. J Antimicrob Chemother. 2007;59(3):378–386. doi:10.1093/jac/dkl504
  • Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211–1221. doi:10.1128/AAC.01252-10
  • Shao X, Zhang X, Zhang Y, et al. RpoN-dependent direct regulation of quorum sensing and the Type VI secretion system in Pseudomonas aeruginosa PAO1. J Bacteriol. 2018;200(16). doi:10.1128/JB.00205-18