186
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multidrug-Resistant Bacteria Isolated from Blood Culture Samples in a Moroccan Tertiary Hospital: True Bacteremia or Contamination?

ORCID Icon, , , , ORCID Icon, , , , , , & show all
Pages 5691-5704 | Received 07 May 2022, Accepted 26 Aug 2022, Published online: 27 Sep 2022

References

  • World Health Organization‎. Global action plan on antimicrobial resistance. [Internet]; 2015. Available from: https://apps.who.int/iris/handle/10665/193736. Accessed September 21, 2022.
  • Hoffman SJ, Outterson K, Røttingen JA, et al. An international legal framework to address antimicrobial resistance. Bull World Health Organ. 2015;93(2):66. doi:10.2471/BLT.15.152710
  • Ahmadi M, Ranjbar R, Behzadi P, Mohammadian T. Virulence factors, antibiotic resistance patterns, and molecular types of clinical isolates of Klebsiella Pneumoniae. Expert Rev Anti Infect Ther. 2022;20(3):463–472. doi:10.1080/14787210.2022.1990040
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33:e00181–19.
  • World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. (WHO/EMP/IAU/2017.12). (Licence: CC BY-NC-SA 3.0 IGO). Geneva: World Health Organization; 2017.
  • Anderson DJ, Moehring RW, Sloane R, et al. Bloodstream infections in community hospitals in the 21st century: a multicenter cohort study. PLoS One. 2014;9(3):e91713. doi:10.1371/journal.pone.0091713
  • Wattal C, Goel N. Pediatric blood cultures and antibiotic resistance: an overview. Indian J Pediatr. 2020;87(2):125–131. doi:10.1007/s12098-019-03123-y
  • Folgori L, Livadiotti S, Carletti M, et al. Epidemiology and clinical outcomes of multidrug-resistant, gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J. 2014;33(9):929–932. doi:10.1097/INF.0000000000000339
  • Clinical and Laboratory Standards Institute. M47A: principles and procedures for blood cultures: approved guideline. [Homepage on the internet]. Available from: https://clsi.org/standards/products/microbiology/documents/m47/. Accessed September 21, 2022.
  • Chukwuemeka IK, Samuel Y. Quality assurance in blood culture: a retrospective study of blood culture contamination rate in a tertiary hospital in Nigeria. Niger Med J. 2014;55(3):201–203. doi:10.4103/0300-1652.132038
  • Weinstein MP, Towns ML, Quartey SM, et al. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis. 1997;24(4):584e602. doi:10.1093/clind/24.4.584
  • Alnami AY, Aljasser AA, Almousa RM, et al. Rate of blood culture contamination in a teaching hospital: a single center study. J Taibah Univ Med Sci. 2015;10(4):432–436. doi:10.1016/j.jtumed.2015.08.002
  • Alahmadi YM, Aldeyab MA, McElnay JC, et al. Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect. 2011;77(3):233–236. doi:10.1016/j.jhin.2010.09.033
  • Thuler LC, Jenicek M, Turgeon JP, Rivard M, Lebel P. Impact of a false positive blood culture result on the management of febrile children. Pediatr Infect Dis J. 1997;16(9):846–851. doi:10.1097/00006454-199709000-00006
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014;27(1):21–47. doi:10.1128/CMR.00031-13
  • Kim F, Polin RA, Hooven TA. Neonatal sepsis. BMJ. 2020;371:m3672. doi:10.1136/bmj.m3672
  • French Society for Microbiology. Internal quality control. In : CASFM / EUCAST : Société Française de Microbiologie Ed; 2019:p.16.
  • Garrec H, Drieux-Rouzet L, Golmard JL, Jarlier V, Robert J. Comparison of nine phenotypic methods for detection of extended-spectrum β-lactamase production by Enterobacteriaceae. J Clin Microbiol. 2011;49(3):1048–1057. doi:10.1128/JCM.02130-10
  • Dilagui I, Loqman S, Lamrani Hanchi A, Soraa N. Antibiotic resistance patterns of carbapenemase-producing enterobacterales in Mohammed VI University Hospital of Marrakech, Morocco. Infect Dis Now. 2022;52(6):S2666–9919. doi:10.1016/j.idnow.2022.06.001
  • Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. Acinetobacter baumannii: an ancient commensal with weapons of a pathogen. Pathogens. 2021;10(4):387. doi:10.3390/pathogens10040387
  • Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics. 2021;10(1):42. doi:10.3390/antibiotics10010042
  • Oliveira PMN, Buonora SN, Souza CLP, et al. Surveillance of multidrug-resistant bacteria in pediatric and neonatal intensive care units in Rio de Janeiro State, Brazil. Rev Soc Bras Med Trop. 2019;52:e20190205. doi:10.1590/0037-8682-0205-2019
  • Nivesvivat T, Piyaraj P, Thunyaharn S, Watanaveeradej V, Suwanpakdee D. Clinical epidemiology, risk factors and treatment outcomes of extended-spectrum beta-lactamase producing Enterobacteriaceae bacteremia among children in a Tertiary Care Hospital, Bangkok, Thailand. BMC Res Notes. 2018;11(1):624. doi:10.1186/s13104-018-3729-3
  • Ndir A, Diop A, Faye PM, Cissé MF, Ndoye B. Epidemiology and burden of bloodstream infections caused by extended-spectrum beta-lactamase producing Enterobacteriaceae in a pediatric hospital in Senegal. PLoS One. 2016;11(2):e0143729. doi:10.1371/journal.pone.0143729
  • Musicha P, Cornick JE, Bar-Zeev N, et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. Lancet Infect Dis. 2017;17(10):1042–1052. doi:10.1016/S1473-3099(17)30394-8
  • Jumaa PA, Chattopadhyay B. Pseudobacteraemia. J Hosp Infect. 1994;27(3):167–177. doi:10.1016/0195-6701(94)90124-4
  • Snyder SR, Favoretto AM, Baetz RA, et al. Effectiveness of practices to reduce blood culture contamination: a Laboratory Medicine Best Practices systematic review and meta-analysis. Clin Biochem. 2012;45(13–14):999–1011. doi:10.1016/j.clinbiochem.2012.06.007
  • Hamilton LF, Gillett HE, Smith-Collins A, Davis JW. A sterile collection bundle intervention reduces the recovery of bacteria from neonatal blood culture. Biomed Hub. 2018;3(1):486703. doi:10.1159/000486703
  • McLaughlin LM, Inglis GDT, Hoellering AB, Davies MW. Relationship between blood culture collection method and proportion of contaminated cultures in neonates. J Paediatr Child Health. 2013;49(2):105–108. doi:10.1111/jpc.12088
  • Lamy B, Dargère S, Arendrup MC, Parienti JJ, Tattevin P. How to optimize the use of blood cultures for the diagnosis of blood stream infections? A state-of-the art. Front Microbiol. 2016;7:697. doi:10.3389/fmicb.2016.00697
  • Norberg A, Christopher NC, Ramundo ML, Bower JR, Berman SA. Contamination rates of blood cultures obtained by dedicated phlebotomy vs intravenous catheter. JAMA. 2003;289(6):726–729. doi:10.1001/jama.289.6.726
  • Min H, Park CS, Kim DS, Kim KH. Blood culture contamination in hospitalized pediatric patients: a single institution experience. Korean J Pediatr. 2014;57(4):178–185. doi:10.3345/kjp.2014.57.4.178
  • Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis. 1983;5(1):35–53. doi:10.1093/clinids/5.1.35
  • Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006;19(4):788–802. doi:10.1128/CMR.00062-05
  • Wynn JL, Polin RA. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr Res. 2020;88(1):85–90. doi:10.1038/s41390-019-0517-2
  • Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36. doi:10.1159/000336629
  • Berger C, Uehlinger J, Ghelfi D, et al. Comparison of C-reactive protein and white blood cell count with differential in neonates at risk for septicaemia. Eur J Pediatr. 1995;154:138–144. doi:10.1007/BF01991918
  • Chiu YH, Chen TJ, Chen CT, Lu -C-C. Positive blood cultures in pediatric emergency department patients: epidemiological and clinical characteristics. Acta Paediatr Taiwan. 2005;46(1):11–16.
  • El-Naggari MA, Al-Mulaabed SW, Al-Muharrmi Z, Mani R, Abdelrahim R, Abdwani R. Blood culture contaminants in a paediatric population retrospective study from a tertiary hospital in Oman. Sultan Qaboos Univ Med J. 2017;17(2):e202–e208. doi:10.18295/squmj.2016.17.02.011
  • Dargère S, Cormier H. Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin Microbiol Infect. 2018;24(9):964–969. doi:10.1016/j.cmi.2018.03.030
  • Bates DW, Goldman L. Contaminant blood cultures and resource utilization: the true consequences of false-positive results. JAMA. 1991;265(3):365–369. doi:10.1001/jama.1991.03460030071031
  • Chappell-Campbell L, Schwenk HT, Capdarest-Arest N, Schroeder AR. Reporting and categorization of blood culture contaminants in infants and young children: a scoping review. J Pediatric Infect Dis Soc. 2020;9(2):110–117. doi:10.1093/jpids/piy125
  • Halverson S, Malani PN, Newton DW, Habicht A, Vander Have KYJ, Younger JG. Impact of hourly emergency department patient volume on blood culture contamination and diagnostic yield. J Clin Microbiol. 2013;51(6):1721–1726. doi:10.1128/JCM.03422-12
  • Lyytikäinen O, Valtonen V, Anttila VJ, Ruutu P. Evaluation of clinical and laboratory findings in leukaemic patients with blood cultures positive for Staphylococcus epidermidis. J Hosp Infect. 1998;38(1):27–35. doi:10.1016/s0195-6701(98)90172-4
  • Société Française de Microbiologie. REMIC: Référentiel en microbiologie Médicale. 6th ed. French Society for Microbiology; 2018.
  • Murni IK, Duke T, Daley AJ, Kinney S, Soenarto Y. Antibiotic resistance and mortality in children with nosocomial bloodstream infection in a teaching hospital in Indonesia. Southeast Asian J Trop Med Public Health. 2016;47(5):983–993.
  • Rhee C, Kadri SS, Dekker JP, et al. Prevalence of antibiotic-resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad-spectrum empiric antibiotic use. JAMA Netw Open. 2020;3(4):e202899. doi:10.1001/jamanetworkopen.2020.2899
  • Pavlovsky M, Press J, Peled NYP, Yagupsky P. Blood culture contamination in pediatric patients: young children and young doctors. Pediatr Infect Dis J. 2006;25(7):611–614. doi:10.1097/01.inf.0000220228.01382.88
  • Craven DE, Lichtenberg DA, Browne KF, Coffey DM, Treadwell TL. Pseudobacteremia traced to cross-contamination by an automated blood culture analyzer. Infect Control. 1984;5(2):75–78. doi:10.1017/s0195941700058987
  • Pearson ML, Pegues DA, Carson LA, O’Donnell R, Berger RH, Anderson RL. Cluster of Enterobacter cloacae pseudobacteremias associated with use of an agar slant blood culturing system. J Clin Microbiol. 1993;31(10):2599–2603. doi:10.1128/jcm.31.10.2599-2603.1993
  • Chaoui L, Mhand R, Mellouki F, Rhallabi N. Contamination of the surfaces of a health care environment by Multidrug-Resistant (MDR) bacteria. Int J Microbiol. 2019;2019:3236526. doi:10.1155/2019/3236526
  • Gudapuri L. Cross – resistance between antiseptic agents and antimicrobial agents. Biom Biostat Int J. 2018;7(5):429–430. doi:10.15406/bbij.2018.07.00242
  • Liu WJ, Fu L, Huang M, et al. Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol. 2017;66(1):13–17. doi:10.1099/jmm.0.000403
  • Hall RT, Domenico HJ, Self WH, Hain PD. Reducing the blood culture contamination rate in a pediatric emergency department and subsequent cost savings. Pediatrics. 2013;131(1):e292–7. doi:10.1542/peds.2012-1030