269
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antibiofilm Activity of Essential Fatty Acids Against Candida albicans from Vulvovaginal Candidiasis and Bloodstream Infections

, , , , , , ORCID Icon & show all
Pages 4181-4193 | Published online: 03 Aug 2022

References

  • Talapko J, Juzbašić M, Matijević T, et al. Candida albicans-The virulence factors and clinical manifestations of infection. J Fungi. 2021;7(2):79. doi:10.3390/jof7020079
  • Turner SA, Butler G. The Candida pathogenic species complex. Cold Spring Harb Perspect Med. 2014;4(9):a019778. doi:10.1101/cshperspect.a019778
  • Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4(1):18026. doi:10.1038/nrdp.2018.26
  • Pereira R, Dos Santos Fontenelle RO, de Brito EHS, de Morais SM. Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol. 2021;131(1):11–22. doi:10.1111/jam.14949
  • Cavalheiro M, Teixeira MC. Candida Biofilms: threats, challenges, and promising strategies. Front Med. 2018;5:28. doi:10.3389/fmed.2018.00028
  • Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6. doi:10.1016/j.mib.2019.04.001
  • Sustr V, Foessleitner P, Kiss H, Farr A. Vulvovaginal candidosis: current concepts, challenges and perspectives. J Fungi. 2020;6(4):267. doi:10.3390/jof6040267
  • Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, et al. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces. 2019;174:110–125. doi:10.1016/j.colsurfb.2018.11.011
  • Rodríguez-Cerdeira C, Martínez-Herrera E, Carnero-Gregorio M, et al. Pathogenesis and clinical relevance of Candida biofilms in vulvovaginal candidiasis. Front Microbiol. 2020;11:544480. doi:10.3389/fmicb.2020.544480
  • Tortorano AM, Prigitano A, Morroni G, Brescini L, Barchiesi F. Candidemia: evolution of drug resistance and novel therapeutic approaches. Infect Drug Resist. 2021;14:5543–5553. doi:10.2147/IDR.S274872
  • Xiao Z, Wang Q, Zhu F, An Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: a retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob Resist Infect Control. 2019;8(1):89. doi:10.1186/s13756-019-0534-2
  • Vitális E, Nagy F, Tóth Z, et al. Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses. 2020;63(4):352–360. doi:10.1111/myc.13049
  • Tascini C, Sozio E, Corte L, et al. The role of biofilm forming on mortality in patients with candidemia: a study derived from real world data. Infect Dis. 2018;50(3):214–219. doi:10.1080/23744235.2017.1384956
  • Soldini S, Posteraro B, Vella A, et al. Microbiologic and clinical characteristics of biofilm-forming Candida parapsilosis isolates associated with fungaemia and their impact on mortality. Clin Microbiol Infect. 2018;24(7):771–777. doi:10.1016/j.cmi.2017.11.005
  • Sasani E, Khodavaisy S, Rezaie S, Salehi M, Yadegari MH. The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microb Pathog. 2021;155:104889. doi:10.1016/j.micpath.2021.104889
  • Casillas-Vargas G, Ocasio-Malavé C, Medina S, et al. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021;82:101093. doi:10.1016/j.plipres.2021.101093
  • Thibane VS, Ells R, Hugo A, et al. Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta. 2012;1820(10):1463–1468. doi:10.1016/j.bbagen.2012.05.004
  • Kuloyo O, Fourie R, Cason E, Albertyn J, Pohl CH. Transcriptome analyses of Candida albicans biofilms, exposed to arachidonic acid and fluconazole, indicates potential drug targets. G3. 2020;10(9):3099–3108. doi:10.1534/g3.120.401340
  • Kim YG, Lee JH, Park JG, Lee J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling. 2020;36(2):126–137. doi:10.1080/08927014.2020.1730333
  • Jamiu AT, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH. Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med Mycol. 2021;59(12):1225–1237. doi:10.1093/mmy/myab055
  • Shareck J, Nantel A, Belhumeur P. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryot Cell. 2011;10(4):565–577. doi:10.1128/EC.00305-10
  • Thibane VS, Kock JL, Ells R, van Wyk PW, Pohl CH. Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs. 2010;8(10):2597–2604. doi:10.3390/md8102597
  • Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance - A review. Life Sci. 2018;203:255–267. doi:10.1016/j.lfs.2018.04.049
  • Wayne P. Clinical and Laboratory Standards Institute: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 4th ed. CLSI standard M27; 2017.
  • Gulati M, Lohse MB, Ennis CL, et al. In vitro culturing and screening of Candida albicans biofilms. Curr Protoc Microbiol. 2018;50(1):e60. doi:10.1002/cpmc.60
  • El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. Correlation between antifungal resistance and virulence factors in Candida albicans recovered from vaginal specimens. Microb Pathog. 2019;128:13–19. doi:10.1016/j.micpath.2018.12.028
  • Wang Y, Pei Z, Lou Z, Wang H. Evaluation of anti-biofilm capability of cordycepin against Candida albicans. Infect Drug Resist. 2021;14:435–448. doi:10.2147/IDR.S285690
  • Wei M, Wang P, Wang S, Yang C, Gu L. HB&L system for rapid phenotypic detection of clinical carbapenem-resistant Enterobacterales isolates. J Glob Antimicrob Resist. 2021;26:272–278. doi:10.1016/j.jgar.2021.02.036
  • Koehler P, Stecher M, Cornely OA, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. 2019;25(10):1200–1212. doi:10.1016/j.cmi.2019.04.024
  • Monfredini PM, Souza ACR, Cavalheiro RP, Siqueira RA, Colombo AL. Clinical impact of Candida spp. biofilm production in a cohort of patients with candidemia. Med Mycol. 2018;56(7):803–808. doi:10.1093/mmy/myx133
  • Gharaghani M, Rezaei-Matehkolaei A, Hardani AK, Zarei Mahmoudabadi A. Pediatric candiduria, epidemiology, genotype distribution and virulence factors of Candida albicans. Microb Pathog. 2021;160:105173. doi:10.1016/j.micpath.2021.105173
  • Hacioglu M, Guzel CB, Savage PB, Tan ASB. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med Mycol. 2019;57(3):291–299. doi:10.1093/mmy/myy023
  • Marak MB, Dhanashree B. Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. Int J Microbiol. 2018;2018:7495218. doi:10.1155/2018/7495218
  • Tulasidas S, Rao P, Bhat S, Manipura R. A study on biofilm production and antifungal drug resistance among Candida species from vulvovaginal and bloodstream infections. Infect Drug Resist. 2018;11:2443–2448. doi:10.2147/IDR.S179462
  • Weerasekera MM, Wijesinghe GK, Jayarathna TA, et al. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem Inst Oswaldo Cruz. 2016;111(11):697–702. doi:10.1590/0074-02760160294
  • Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121(6):3390–3411. doi:10.1021/acs.chemrev.0c00199
  • de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JC, Junqueira JC. Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia. 2020;185(3):415–424. doi:10.1007/s11046-020-00445-w
  • Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients. 2021;13(7):2421. doi:10.3390/nu13072421
  • Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7(7):CD003177. doi:10.1002/14651858.CD003177.pub3
  • Freitas RDS, Campos MM. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients. 2019;11(5):945. doi:10.3390/nu11050945
  • Dong X, Li S, Chen J, Li Y, Wu Y, Zhang D. Association of dietary ω-3 and ω-6 fatty acids intake with cognitive performance in older adults: national Health and nutrition examination Survey (NHANES) 2011–2014. Nutr J. 2020;19(1):25. doi:10.1186/s12937-020-00547-7
  • Christen WG, Schaumberg DA, Glynn RJ, Buring JE. Dietary ω-3 fatty acid and fish intake and incident age-related macular degeneration in women. Arch Ophthalmol. 2011;129(7):921–929. doi:10.1001/archophthalmol.2011.34
  • Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol. 2018;9(1):345–381. doi:10.1146/annurev-food-111317-095850
  • Guimarães A, Venâncio A. The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins. 2022;14(3):188. doi:10.3390/toxins14030188
  • Kumar P, Lee JH, Beyenal H, Lee J. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 2020;28(9):753–768. doi:10.1016/j.tim.2020.03.014
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J. 2012;10(7):2815.
  • U.S. Department of Agriculture. Agricultural Research Service. Nutrient intakes from food: mean amounts consumed per individual, by gender and age. Available from: http://www.ars.usda.gov/ba/bhnrc/fsrg. Accessed April 25, 2014.