290
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Changes in Antimicrobial Resistance and Etiology of Blood Culture Isolates: Results of a Decade (2010–2019) of Surveillance in a Northern Region of Colombia

, , , , &
Pages 6067-6079 | Received 01 Jun 2022, Accepted 09 Sep 2022, Published online: 20 Oct 2022

References

  • Martinez RM, Wolk DM, Hayden RT, Wolk DM, Carroll KC, Tang Y-W. Bloodstream Infections. Microbiol Spectr. 2016;4(4). doi:10.1128/MICROBIOLSPEC.DMIH2-0031-2016
  • Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–211. doi:10.1016/S0140-6736(19)32989-7
  • Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19(6):501–509. doi:10.1111/1469-0691.12195
  • Mcalearney AS, Hefner JL. Getting to zero: goal commitment to reduce blood stream infections. Med Care Res Rev. 2015:1–20. DOI:10.1177/1077558715616028
  • Kraker De MEA, Jarlier V, Monen JCM, Heuer OE, Sande Van De N, Grundmann H. The changing epidemiology of bacteraemias in Europe: trends from the European antimicrobial resistance surveillance system. Clin Microbiol Infect. 2012;19(9):860–868. doi:10.1111/1469-0691.12028
  • Diekema DJ, Hsueh PR, Mendes RE, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019;63(7). doi:10.1128/AAC.00355-19
  • Fisman D, Patrozou E, Carmeli Y, et al. Geographical variability in the likelihood of bloodstream infections due to gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS One. 2014;9(12):1–18. doi:10.1371/journal.pone.0114548
  • World Health Organization (WHO). WHO global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics; 2017. Available from: https://apps.who.int/iris/handle/10665/311820. Accessed September 29, 2022.
  • World Health Organization. Thirteenth general programme of work, 2019–2023. Geneva; 2019. Available from: https://apps.who.int/%0Airis/bitstream/handle/10665/324775/WHO-PRP-18.1-eng.pdf,%0A. Accessed April 8, 2021.
  • Agnew E, Dolecek C, Hasan R, et al. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; 2021. Available from: http://www.who.int/glass/resources/publications/early-implementation-report-2020/en/.
  • Instituto Nacional de Salud. Vigilancia Por Laboratorio En Infecciones Asociadas a La Atención En Salud (IAAS) Colombia, Años 2012 [Laboratory surveillance of healthcare associated infections Colombia years 2012 to 2020]; 2021. Spanish. Available from: https://www.ins.gov.co/buscador-eventos/Informacin.delaboratorio/vigilancia-por-laboratorio-de-resistencia-antimicrobiana-en-iaas-en-colombia-año-2016-A-2020.pdf. Accessed September 29, 2022.
  • Johnson A. Surveillance of antibiotic resistance. Philos Trans R Soc B Biol Sci. 2015;370(1670):1670. doi:10.1098/rstb.2014.0080
  • ReLAVRA/OPS. Red Latinoamericana y del Caribe de Vigilancia de la Resistencia a los Antimicrobianos [Latinoamerican and caribbean network for AMR surveillance] - ReLAVRA+. OPS/OMS 2012; 2021. Available from: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=13682:. Accessed September 29, 2022.
  • Rada AM, Hernández-Gómez C, Restrepo E, Villegas MV. Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001–2016. [Distribution and molecular characterization of beta-lactamases in gram negative bacteria in Colombia, 2001-2016] Biomédica. 2019;39:199–220. doi:10.7705/BIOMEDICA.V39I3.4351
  • Clinical and Laboratory Standards Institute. CLSI: Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data. 4th ed. M39-A4; 2014.
  • Wayne PA. Performance Standards for Antimicrobial Susceptibility Testing. M-100. 29th ed. Clinical and Laboratory Standards Institute. CLSI; 2020.
  • Jin L, Zhao C, Li H, Wang R, Wang Q, Wang H. Clinical profile, prognostic factors, and outcome prediction in hospitalized patients with bloodstream infection: results from a 10-year prospective multicenter study. Front Med. 2021;8. doi:10.3389/fmed.2021.629671.
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Cases from a prospective nationwide surveillance study. BSI US Hosp • CID; 2004: 179. Available from: https://academic.oup.com/cid/article/39/3/309/351413. Accessed September 29, 2022.
  • Sader HS, Castanheira M, Streit JM, Flamm RK. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bloodstream infections in United States medical centers (2015–2017). Diagn Microbiol Infect Dis. 2019;95(3):114850. doi:10.1016/j.diagmicrobio.2019.06.002
  • Morkel G, Bekker A, Marais BJ, Kirsten G, van Wyk J, Dramowski A. Bloodstream infections and antimicrobial resistance patterns in a South African neonatal intensive care unit. Paediatr Int Child Health. 2014;34(2):108–114. doi:10.1179/2046905513Y.0000000082
  • Spaulding AB, Watson D, Dreyfus J, et al. Epidemiology of bloodstream infections in hospitalized children in the United States, 2009–2016. Clin Infect Dis. 2019;69(6):995–1002. doi:10.1093/cid/ciy1030
  • Beekmann SE, Diekema DJ, Doern GV. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol. 2005;26(6):559–566. doi:10.1086/502584
  • Finkelstein R, Fusman R, Oren I, Kassis I, Hashman N. Clinical and epidemiologic significance of coagulase-negative staphylococci bacteremia in a tertiary care university Israeli hospital. Am J Infect Control. 2002;30(1):21–25. doi:10.1067/mic.2002.118406
  • Pien BC, Sundaram P, Raoof N, et al. The clinical and prognostic importance of positive blood cultures in adults. Am J Med. 2010;123(9):819–828. doi:10.1016/j.amjmed.2010.03.021
  • Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis. 2019;6(Suppl 1):S47–S53. doi:10.1093/ofid/ofy270
  • Pfaller MA, Carvalhaes CG, Smith CJ, Diekema DJ, Castanheira M. Bacterial and fungal pathogens isolated from patients with bloodstream infection: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (2012–2017). Diagn Microbiol Infect Dis. 2020;97(2):115016. doi:10.1016/j.diagmicrobio.2020.115016
  • Salles MJC, Zurita J, Mejía C, et al. Resistant Gram-negative infections in the outpatient setting in Latin America. Epidemiol Infect. 2013;141(12):2459–2472. doi:10.1017/S095026881300191X
  • Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466–475. doi:10.1016/j.mib.2006.08.011
  • Radice M, Power P, Di Conza J, et al. Early dissemination of CTX-M-derived enzymes in South America [3] (multiple letters). Antimicrob Agents Chemother. 2002;46(2):602–604. doi:10.1128/AAC.46.2.602-604.2002
  • García-Betancur JC, Appel TM, Esparza G, et al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 2021;19(2):197–213. doi:10.1080/14787210.2020.1813023
  • Panamerican Health Organization. Magnitud y tendencias de la resistencia a los antimicrobianos en Latinoamérica. ReLAVRA 2014, 2015, 2016. Informe resumido [Magnitude and Trends of Antimicrobial Resistance in Latin America. ReLAVRA 2014, 2015, 2016. Summary Report]; 2020. Spanish. Available from: https://www.Paho.org/es/documentos/magnitud-tendencias-resistencia-antimicrobianos-latinoamerica-relavra-2014-2015-2016. Accessed October 8, 2022.