242
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Resistance Phenotype and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Nanjing Children’s Hospital in Jiangsu Province, China

ORCID Icon, , &
Pages 5435-5447 | Received 02 Jun 2022, Accepted 29 Aug 2022, Published online: 14 Sep 2022

References

  • Stojowska-Swędrzyńska K, Łupkowska A, Kuczyńska-Wiśnik D, Laskowska E. Antibiotic heteroresistance in Klebsiella pneumoniae. Int J Mol Sci. 2021;23(1):449. doi:10.3390/ijms23010449
  • Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4. doi:10.3389/fcimb.2018.00004
  • Han R, Shi Q, Wu S, et al.; China Antimicrobial Surveillance Network (CHINET) Study Group. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol. 2020;10:314. doi:10.3389/fcimb.2020.00314
  • Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. 2019;33(1):e00102–19. doi:10.1128/CMR.00102-19
  • Yin D, Dong D, Li K, et al. Clonal dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae in neonates. Antimicrob Agents Chemother. 2017;61(8):e00385–17. doi:10.1128/AAC.00385-17
  • Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother. 2007;51(2):763–765. doi:10.1128/AAC.01053-06
  • Naha S, Sands K, Mukherjee S, et al. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. Int J Antimicrob Agents. 2020;55(3):105903. doi:10.1016/j.ijantimicag.2020.105903
  • Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother. 2011;66(6):1255–1259. doi:10.1093/jac/dkr082
  • Zheng R, Zhang Q, Guo Y, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China. Ann Clin Microbiol Antimicrob. 2016;15:10. doi:10.1186/s12941-016-0124-6
  • Dong F, Zhang Y, Yao K, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniae bloodstream infections in a Chinese Children’s Hospital: predominance of New Delhi Metallo-β-Lactamase-1. Microb Drug Resist. 2018;24(2):154–160. doi:10.1089/mdr.2017.0031
  • Zou H, Jia X, He X, et al. Emerging threat of multidrug resistant pathogens from neonatal sepsis. Front Cell Infect Microbiol. 2021;12(11):694093. doi:10.3389/fcimb.2021.694093
  • Liu Z, Gu Y, Li X, et al. Identificationand characterization of NDM-1-producing hypervirulent (hypermucoviscous) Klebsiella pneumoniae in China. Ann Lab Med. 2019;39(2):167–175. doi:10.3343/alm.2019.39.2.167
  • Kong Z, Cai R, Cheng C, et al. First reported nosocomial outbreak Of NDM-5-producing Klebsiella pneumoniae in A neonatal unit in China. Infect Drug Resist. 2019;12:3557–3566. doi:10.2147/IDR.S218945
  • Fu B, Yin D, Sun C, et al. Clonal and horizontal transmission of blaNDM among Klebsiella pneumoniae in children’s intensive care units. Microbiol Spectr. 2022;27:e0157421. doi:10.1128/spectrum.01574-21
  • Gong Y, Lu Y, Xue D, et al. Emergence of a carbapenem-resistant Klebsiella pneumoniae isolate co-harbouring dual blaNDM- 6 -carrying plasmids in China. Front Microbiol. 2022;13:900831. doi:10.3389/fmicb.2022.900831
  • Wang X, Li H, Zhao C, et al. Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. Int J Antimicrob Agents. 2014;44(1):90–91. doi:10.1016/j.ijantimicag.2014.04.010
  • Xie S, Fu S, Li M, et al. Microbiological characteristics of carbapenem-resistant Enterobacteriaceae clinical isolates collected from county hospitals. Infect Drug Resist. 2020;13:1163–1169. doi:10.2147/IDR.S248147
  • Bai Y, Shao C, Hao Y, Wang Y, Jin Y. Using whole genome sequencing to trace, control and characterize a hospital infection of IMP-4-producing Klebsiella pneumoniae ST2253 in a neonatal unit in a tertiary hospital, China. Front Public Health. 2021;9:755252. doi:10.3389/fpubh.2021.755252
  • Huang YT, Kuo YW, Lee NY, et al.; SMART study group. Evaluating NG-test CARBA 5 multiplex immunochromatographic and cepheid xpert CARBA-R assays among carbapenem-resistant Enterobacterales isolates associated with bloodstream infection. Microbiol Spectr. 2022;10(1):e0172821. doi:10.1128/spectrum.01728-21
  • Yao H, Cheng J, Li A, et al. Molecular characterization of an IncFIIk plasmid co-harboring blaIMP-26 and tet(A) variant in a clinical Klebsiella pneumoniae isolate. Front Microbiol. 2020;11:1610. doi:10.3389/fmicb.2020.01610
  • Wang S, Zhao J, Liu N, et al. IMP-38-producing high-risk sequence type 307 Klebsiella pneumoniae strains from a neonatal unit in China. mSphere. 2020;5(4):e00407–20. doi:10.1128/mSphere.00407-20
  • Patil S, Chen H, Guo C, et al. Emergence of Klebsiella pneumoniae ST307 co-producing CTX-M with SHV and KPC from paediatric patients at Shenzhen Children’s Hospital, China. Infect Drug Resist. 2021;14:3581–3588. doi:10.2147/IDR.S324018
  • Liu E, Jia P, Li X, et al. In vitro and in vivo effect of antimicrobial agent combinations against carbapenem-resistant Klebsiella pneumoniae with different resistance mechanisms in China. Infect Drug Resist. 2021;14:917–928. doi:10.2147/IDR.S292431
  • Guo L, An J, Ma Y, et al. Nosocomial outbreak of OXA-48-producing Klebsiella pneumoniae in a Chinese Hospital: clonal transmission of ST147 and ST383. PLoS One. 2016;11(8):e0160754. doi:10.1371/journal.pone.0160754
  • Xie L, Dou Y, Zhou K, et al. Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a Klebsiella pneumoniae isolate in China. Front Microbiol. 2017;8:133. doi:10.3389/fmicb.2017.00133
  • Lu MC, Chen YT, Tang HL, et al. Transmission and evolution of OXA-48-producing Klebsiella pneumoniae ST11 in a single hospital in Taiwan. J Antimicrob Chemother. 2020;75(2):318–326. doi:10.1093/jac/dkz431
  • Li X, Ma W, Qin Q, et al. Nosocomial spread of OXA-232-producing Klebsiella pneumoniae ST15 in a teaching hospital, Shanghai, China. BMC Microbiol. 2019;19(1):235. doi:10.1186/s12866-019-1609-1
  • Jia H, Zhang Y, Ye J, et al. Outbreak of multidrug-resistant OXA-232-producing ST15 Klebsiella pneumoniae in a teaching hospital in Wenzhou, China. Infect Drug Resist. 2021;14:4395–4407. doi:10.2147/IDR.S329563
  • European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0; 2020.
  • Clinical and Laboratory Standards Institute. M100‐S29. Performance Standards for Antimicrobial Susceptibility Testing. 9th ed. Wayne, PA: CLSI; 2019.
  • Zhang P, Shi Q, Hu H, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect. 2020;26(1):124.e1–124.e4. doi:10.1016/j.cmi.2019.08.020
  • Rogers BA, Sidjabat HE, Silvey A, et al. Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–103. doi:10.1089/mdr.2012.0063
  • Guo X, Wang Q, Xu H, et al. Emergence of IMP-8-producing Comamonas thiooxydans causing urinary tract infection in China. Front Microbiol. 2021;12:585716. doi:10.3389/fmicb.2021.585716
  • Wang X, Wang Y, Zhou Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018;7(1):122. doi:10.1038/s41426-018-0124-z
  • Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–2239. doi:10.1128/jcm.33.9.2233-2239.1995
  • Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging carbapenem-resistant enterobacteriaceae infection, its epidemiology and novel treatment options: a review. Infect Drug Resist. 2021;14:4363–4374. doi:10.2147/IDR.S337611
  • Sun K, Chen X, Li C, Yu Z, Zhou Q, Yan Y. Clonal dissemination of multilocus sequence type 11 Klebsiella pneumoniae carbapenemase - producing K. pneumoniae in a Chinese teaching hospital. APMIS. 2015;123(2):123–127. doi:10.1111/apm.12313
  • Mukherjee S, Bhattacharjee A, Naha S, et al. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infect Genet Evol. 2019;69:166–175. doi:10.1016/j.meegid.2019.01.024
  • Flores-Valdez M, Ares MA, Rosales-Reyes R, et al. Whole genome sequencing of pediatric Klebsiella pneumoniae strains reveals important insights into their virulence-associated traits. Front Microbiol. 2021;12:711577. doi:10.3389/fmicb.2021.711577
  • Pan F, Xu Q, Zhang H. Emergence of NDM-5 producing carbapenem-resistant Klebsiella aerogenes in a pediatric hospital in Shanghai, China. Front Public Health. 2021;9:621527. doi:10.3389/fpubh.2021.621527
  • Zhao J, Zhang Y, Fan Y, et al. Characterization of an NDM-5-producing hypervirulent Klebsiella pneumoniae sequence type 65 clone from a lung transplant recipient. Emerg Microbes Infect. 2021;10(1):396–399. doi:10.1080/22221751.2021.1889932
  • Wang Z, Li M, Shen X, et al. Outbreak of blaNDM-5-harboring Klebsiella pneumoniae ST290 in a tertiary hospital in China. Microb Drug Resist. 2019;25(10):1443–1448. doi:10.1089/mdr.2019.0046
  • Cao X, Zhong Q, Guo Y, et al. Emergence of the coexistence of mcr-1, blaNDM-5, and blaCTX-M-55 in Klebsiella pneumoniae ST485 clinical isolates in China. Infect Drug Resist. 2021;28(14):3449–3458. doi:10.2147/IDR.S311808
  • Lorenzin G, Gona F, Battaglia S, et al. Detection of NDM-1/5 and OXA-48 co-producing extensively drug-resistant hypervirulent Klebsiella pneumoniae in Northern Italy. J Glob Antimicrob Resist. 2022;28:146–150. doi:10.1016/j.jgar.2022.01.001
  • Brinkac LM, White R, D’Souza R, Nguyen K, Obaro SK, Fouts DE. Emergence of New Delhi metallo-β-lactamase (NDM-5) in Klebsiella quasipneumoniae from neonates in a Nigerian hospital. mSphere. 2019;4(2):e00685–18. doi:10.1128/mSphere.00685-18
  • Balm MN, La MV, Krishnan P, Jureen R, Lin RT, Teo JW. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin Microbiol Infect. 2013;19(9):E421–3. doi:10.1111/1469-0691.12247
  • Rojas LJ, Hujer AM, Rudin SD, et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the americas. Antimicrob Agents Chemother. 2017;61(7):e00454–17. doi:10.1128/AAC.00454-17
  • Yan JJ, Ko WC, Tsai SH, Wu HM, Wu JJ. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying bla(IMP-8) in a university medical center in Taiwan. J Clin Microbiol. 2001 Dec;39(12):4433-9. doi: 10.1128/JCM.39.12.4433-4439.2001
  • Kong Z, Liu X, Li C, Cheng S, Xu F, Gu B. Clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Jiangsu Province, China. Infect Drug Resist. 2020;13:4627–4635. doi:10.2147/IDR.S293206
  • Wajima T, Sugawara T, Umeda Y, Hagimoto A, Tanaka E, Nakaminami H. Molecular characterisation of carbapenem- and tigecycline-resistant Klebsiella pneumoniae strains isolated from blood and bile samples. J Infect Chemother. 2022;28(2):187–191. doi:10.1016/j.jiac.2021.10.005
  • Naha S, Sands K, Mukherjee S, Saha B, Dutta S, Basu S. OXA-181-like carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from septicemic neonates: coexistence with NDM-5, resistome, transmissibility, and genome diversity. mSphere. 2021;6(1):e01156–20. doi:10.1128/mSphere.01156-20
  • Zhang B, Hu R, Liang Q, et al. Comparison of two distinct subpopulations of Klebsiella pneumoniae ST16 co-occurring in a single patient. Microbiol Spectr. 2022;25:e0262421. doi:10.1128/spectrum.02624-21
  • Rawson TM, Brzeska-Trafny I, Maxfield R, et al. A practical laboratory method to determine ceftazidime-avibactam-aztreonam synergy in patients with New Delhi Metallo-beta-lactamase (NDM) producing Enterobacterales infection. J Glob Antimicrob Resist. 2022;29:558–562. doi:10.1016/j.jgar.2022.01.025