287
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5813-5829 | Received 11 Jun 2022, Accepted 16 Sep 2022, Published online: 03 Oct 2022

References

  • Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, et al. Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res Microbiol. 2014;165(7):526–530. doi:10.1016/j.resmic.2014.07.004
  • Grimont PAD, Weill FX. Antigenic Formulae of the Salmonella Serovars. World Health Organization Collaborating Center for Reference and Research on Salmonella. 9th ed. Paris: Pasteur Institute; 2007. Available from: https://www.pasteur.fr/sites/default/files/veng_0.pdf.
  • Gal-Mor O. Persistent infection and long-term carriage of typhoidal and nontyphoidal salmonellae. Clin Microbiol Rev. 2019;32(1). doi:10.1128/CMR.00088-18
  • Monack DM. Salmonella persistence and transmission strategies. Curr Opin Microbiol. 2012;15(1):100–107. doi:10.1016/j.mib.2011.10.013
  • Feasey NA, Dougan G, Kingsley RA, et al. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379(9835):2489–2499. doi:10.1016/S0140-6736(11)61752-2
  • GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators.The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19(12):1312–1324. doi:10.1016/S1473-3099(19)30418-9
  • Hill PSW, Helaine S. Antibiotic persisters and relapsing Salmonella enterica infections. In: Lewis K, editor. Persister Cells and Infectious Disease. 1st ed. Switzerland: Springer Cham; 2019:19–38.
  • Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol. 2012;20(7):320–327. doi:10.1016/j.tim.2012.04.004
  • Gunn JS, Marshall JM, Baker S, et al. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014;22(11):648–655. doi:10.1016/j.tim.2014.06.007
  • Okoro CK, Kingsley RA, Connor TR, et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44(11):1215–1221. doi:10.1038/ng.2423
  • Marzel A, Desai PT, Goren A, et al. Persistent infections by nontyphoidal Salmonella in humans: epidemiology and genetics. Clin Infect Dis. 2016;62(7):879–886. doi:10.1093/cid/civ1221
  • Aserkoff B, Bennett JV. Effect of antibiotic therapy in acute salmonellosis on the fecal excretion of salmonellae. N Engl J Med. 1969;281(12):636–640. doi:10.1056/NEJM196909182811202
  • Murase T, Yamada M, Muto T, et al. Fecal excretion of Salmonella enterica serovar Typhimurium following a food-borne outbreak. J Clin Microbiol. 2000;38(9):3495–3497. doi:10.1128/JCM.38.9.3495-3497.2000
  • Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17(7):441–448. doi:10.1038/s41579-019-0196-3
  • Kaiser P, Regoes RR, Dolowschiak T, et al. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment. PLoS Biol. 2014;12(2):e1001793. doi:10.1371/journal.pbio.1001793
  • Helaine S, Cheverton AM, Watson KG, et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343(6167):204–208. doi:10.1126/science.1244705
  • Claudi B, Sprote P, Chirkova A, et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell. 2014;158(4):722–733. doi:10.1016/j.cell.2014.06.045
  • Kaldalu N, Hauryliuk V, Turnbull KJ, et al. In vitro studies of persister cells. Microbiol Mol Biol Rev. 2020;84(4). doi:10.1128/MMBR.00070-20
  • Wainwright J, Hobbs G, Nakouti I. Persister cells: formation, resuscitation and combative therapies. Arch Microbiol. 2021;203(10):5899–5906. doi:10.1007/s00203-021-02585-z
  • Wilmaerts D, Windels EM, Verstraeten N, et al. General mechanisms leading to persister formation and awakening. Trends Genet. 2019;35(6):401–411. doi:10.1016/j.tig.2019.03.007
  • Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev. 2017;41(3):219–251. doi:10.1093/femsre/fux001
  • Slattery A, Victorsen AH, Brown A, et al. Isolation of highly persistent mutants of Salmonella enterica serovar Typhimurium reveals a new toxin-antitoxin module. J Bacteriol. 2013;195(4):647–657. doi:10.1128/JB.01397-12
  • Cheverton AM, Gollan B, Przydacz M, et al. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell. 2016;63(1):86–96. doi:10.1016/j.molcel.2016.05.002
  • Silva-Herzog E, McDonald EM, Crooks AL, et al. Physiologic stresses reveal a Salmonella persister state and TA family toxins modulate tolerance to these stresses. PLoS One. 2015;10(12):e0141343. doi:10.1371/journal.pone.0141343
  • Harms A, Brodersen DE, Mitarai N, et al. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70(5):768–784. doi:10.1016/j.molcel.2018.01.003
  • Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: biology, identification, and application. Mob Genet Elements. 2013;3(5):e26219. doi:10.4161/mge.26219
  • Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Ann Rev Genet. 2011;45:61–79. doi:10.1146/annurev-genet-110410-132412
  • Bakkeren E, Diard M, Hardt WD. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol. 2020;18(9):479–490. doi:10.1038/s41579-020-0378-z
  • Zhang S, Kingsley RA, Santos RL, et al. Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect Immun. 2003;71(1):1–12. doi:10.1128/IAI.71.1.1-12.2003
  • Monack DM, Bouley DM, Falkow S. Salmonella Typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med. 2004;199(2):231–241. doi:10.1084/jem.20031319
  • Crum-Cianflone NF. Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr Gastroenterol Rep. 2008;10(4):424–431. doi:10.1007/s11894-008-0079-7
  • Akhtar S, Sarker MR, Jabeen K, et al. Antimicrobial resistance in Salmonella enterica serovar Typhi and Paratyphi in South Asia-current status, issues and prospects. Crit Rev Microbiol. 2015;41(4):536–545. doi:10.3109/1040841X.2014.880662
  • Whistler T, Sapchookul P, McCormick DW, et al. Epidemiology and antimicrobial resistance of invasive non-typhoidal Salmonellosis in rural Thailand from 2006–2014. PLoS Negl Trop Dis. 2018;12(8):e0006718. doi:10.1371/journal.pntd.0006718
  • Phu Huong Lan N, Le Thi Phuong T, Nguyen Huu H, et al. Invasive non-typhoidal Salmonella infections in Asia: clinical observations, disease outcome and dominant serovars from an infectious disease hospital in Vietnam. PLoS Negl Trop Dis. 2016;10(8):e0004857. doi:10.1371/journal.pntd.0004857
  • Gordon MA. Salmonella infections in immunocompromised adults. J Infect. 2008;56(6):413–422. doi:10.1016/j.jinf.2008.03.012
  • Mori N, Szvalb AD, Adachi JA, et al. Clinical presentation and outcomes of non-typhoidal Salmonella infections in patients with cancer. BMC Infect Dis. 2021;21(1):1021. doi:10.1186/s12879-021-06710-7
  • Yen YF, Wang FD, Chiou CS, et al. Prognostic factors and clinical features of non-typhoid Salmonella bacteremia in adults. J Chin Med Assoc. 2009;72(8):408–413. doi:10.1016/S1726-4901(09)70397-1
  • Kingsley RA, Msefula CL, Thomson NR, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–2287. doi:10.1101/gr.091017.109
  • Onwuezobe IA, Oshun PO, Odigwe CC. Antimicrobials for treating symptomatic non-typhoidal Salmonella infection. Cochrane Database Syst Rev. 2012;11:CD001167. doi:10.1002/14651858.CD001167.pub2
  • Griffin AJ, McSorley SJ. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol. 2011;4(4):371–382. doi:10.1038/mi.2011.2
  • Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella Typhimurium directs the type of induced immune response. Immunity. 2007;27(6):975–984. doi:10.1016/j.immuni.2007.10.011
  • Stapels DAC, Hill PWS, Westermann AJ, et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science. 2018;362(6419):1156–1160. doi:10.1126/science.aat7148
  • Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–372. doi:10.1146/annurev.micro.112408.134306
  • Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe. 2013;13(6):632–642. doi:10.1016/j.chom.2013.05.009
  • Barrett TC, Mok WWK, Murawski AM, et al. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun. 2019;10(1):1177. doi:10.1038/s41467-019-09058-4
  • Bakkeren E, Huisman JS, Fattinger SA, et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature. 2019;573(7773):276–280. doi:10.1038/s41586-019-1521-8
  • Bakkeren E, Herter JA, Huisman JS, et al. Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. Elife. 2021;10. doi:10.7554/eLife.69744
  • Windels EM, Michiels JE, Fauvart M, et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J. 2019;13(5):1239–1251. doi:10.1038/s41396-019-0344-9
  • Hill PWS, Moldoveanu AL, Sargen M, et al. The vulnerable versatility of Salmonella antibiotic persisters during infection. Cell Host Microb. 2021;29(12):1757–1773. doi:10.1016/j.chom.2021.10.002
  • Octavia S, Wang Q, Tanaka MM, et al. Genomic variability of serial human isolates of Salmonella enterica serovar Typhimurium associated with prolonged carriage. J Clin Microbiol. 2015;53(11):3507–3514. doi:10.1128/JCM.01733-15
  • Liu J, Gefen O, Ronin I, et al. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science. 2020;367(6474):200–204. doi:10.1126/science.aay3041
  • Zhang K, Dupont A, Torow N, et al. Age-dependent enterocyte invasion and microcolony formation by Salmonella. PLoS Pathog. 2014;10(9):e1004385. doi:10.1371/journal.ppat.1004385
  • Xiang Y, Li F, Dong N, et al. Investigation of a salmonellosis outbreak caused by multidrug resistant Salmonella Typhimurium in China. Front Microbiol. 2020;11:801. doi:10.3389/fmicb.2020.00801
  • Moffatt CR, Musto J, Pingault N, et al. Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog Dis. 2016;13(7):379–385. doi:10.1089/fpd.2015.2110
  • Bruun T, Sorensen G, Forshell LP, et al. An outbreak of Salmonella Typhimurium infections in Denmark, Norway and Sweden, 2008. Euro Surveill. 2009;14(10):19147.
  • Bigger JW. Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 1944;244(6320):497–500. doi:10.1016/S0140-6736(00)74210-3
  • Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 1983;155(2):768–775. doi:10.1128/jb.155.2.768-775.1983
  • Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–1625. doi:10.1126/science.1099390
  • Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354:6318. doi:10.1126/science.aaf4268
  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453–464. doi:10.1038/nrmicro.2017.42
  • Moldoveanu AL, Rycroft JA, Helaine S. Impact of bacterial persisters on their host. Curr Opin Microbiol. 2021;59:65–71. doi:10.1016/j.mib.2020.07.006
  • Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: current and emerging anti-persister strategies and therapeutics. Drug Resist Updat. 2018;38:12–26. doi:10.1016/j.drup.2018.03.002
  • Ronneau S, Helaine S. Clarifying the link between toxin-antitoxin modules and bacterial persistence. J Mol Biol. 2019;431(18):3462–3471. doi:10.1016/j.jmb.2019.03.019
  • Ronneau S, Hill PW, Helaine S. Antibiotic persistence and tolerance: not just one and the same. Curr Opin Microbiol. 2021;64:76–81. doi:10.1016/j.mib.2021.09.017
  • Gollan B, Grabe G, Michaux C, et al. Bacterial persisters and infection: past, present, and progressing. Annu Rev Microbiol. 2019;73:359–385. doi:10.1146/annurev-micro-020518-115650
  • Brauner A, Fridman O, Gefen O, et al. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14(5):320–330. doi:10.1038/nrmicro.2016.34
  • Bamford RA, Smith A, Metz J, et al. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol. 2017;15(1):121. doi:10.1186/s12915-017-0465-4
  • Ayrapetyan M, Williams TC, Baxter R, et al. Viable but nonculturable and persister cells coexist stochastically and are induced by human serum. Infect Immun. 2015;83(11):4194–4203. doi:10.1128/IAI.00404-15
  • Ayrapetyan M, Williams T, Oliver JD. Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol. 2018;200(20). doi:10.1128/JB.00249-18
  • Kusumoto A, Miyashita M, Kawamoto K. Deletion in the C-terminal domain of ClpX delayed entry of Salmonella enterica into a viable but non-culturable state. Res Microbiol. 2013;164(4):335–341. doi:10.1016/j.resmic.2013.01.011
  • Li L, Mendis N, Trigui H, et al. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. 2014;5:258. doi:10.3389/fmicb.2014.00258
  • Levin-Reisman I, Ronin I, Gefen O, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355(6327):826–830. doi:10.1126/science.aaj2191
  • Muller AJ, Kaiser P, Dittmar KE, et al. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microb. 2012;11(1):19–32. doi:10.1016/j.chom.2011.11.013
  • Sturm A, Heinemann M, Arnoldini M, et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 2011;7(7):e1002143. doi:10.1371/journal.ppat.1002143
  • Diard M, Sellin ME, Dolowschiak T, et al. Antibiotic treatment selects for cooperative virulence of Salmonella Typhimurium. Curr Biol. 2014;24(17):2000–2005. doi:10.1016/j.cub.2014.07.028
  • Diard M, Garcia V, Maier L, et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature. 2013;494(7437):353–356. doi:10.1038/nature11913
  • Bravo-Blas A, Utriainen L, Clay SL, et al. Salmonella enterica Serovar Typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J Immunol. 2019;202(1):260–267. doi:10.4049/jimmunol.1701254
  • Griffin AJ, Li LX, Voedisch S, et al. Dissemination of persistent intestinal bacteria via the mesenteric lymph nodes causes typhoid relapse. Infect Immun. 2011;79(4):1479–1488. doi:10.1128/IAI.01033-10
  • Kurtz JR, Nieves W, Bauer DL, et al. Salmonella persistence and host immunity are dictated by the anatomical microenvironment. Infect Immun. 2020;88(8). doi:10.1128/IAI.00026-20
  • Pucciarelli MG, Garcia-Del Portillo F. Salmonella intracellular lifestyles and their impact on host-to-host transmission. Microbiol Spectr. 2017;5(4). doi:10.1128/microbiolspec.MTBP-0009-2016
  • Steele-Mortimer O. The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol. 2008;11(1):38–45. doi:10.1016/j.mib.2008.01.002
  • Anderson CJ, Kendall MM. Salmonella enterica serovar Typhimurium strategies for host adaptation. Front Microbiol. 2017;8:1983. doi:10.3389/fmicb.2017.01983
  • Rathman M, Sjaastad MD, Falkow S. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun. 1996;64(7):2765–2773. doi:10.1128/iai.64.7.2765-2773.1996
  • Rycroft JA, Gollan B, Grabe GJ, et al. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat Commun. 2018;9(1):1993. doi:10.1038/s41467-018-04472-6
  • Pontes MH, Groisman EA. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal. 2019;12(592). doi:10.1126/scisignal.aax3938
  • Harms A, Fino C, Sorensen MA, et al. Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio. 2017;8(6). doi:10.1128/mBio.01964-17
  • Drecktrah D, Knodler LA, Ireland R, et al. The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic. 2006;7(1):39–51. doi:10.1111/j.1600-0854.2005.00360.x
  • Figueira R, Watson KG, Holden DW, et al. Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar Typhimurium: implications for rational vaccine design. mBio. 2013;4(2):e00065. doi:10.1128/mBio.00065-13
  • Eisenreich W, Rudel T, Heesemann J, et al. Persistence of intracellular bacterial pathogens-with a focus on the metabolic perspective. Front Cell Infect Microbiol. 2020;10:615450. doi:10.3389/fcimb.2020.615450
  • Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12(4):208–214. doi:10.1038/nchembio.2044
  • Fraikin N, Goormaghtigh F, Van Melderen L. Type II toxin-antitoxin systems: evolution and revolutions. J Bacteriol. 2020;202(7). doi:10.1128/JB.00763-19
  • Black DS, Irwin B, Moyed HS. Autoregulation of Hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol. 1994;176(13):4081–4091. doi:10.1128/jb.176.13.4081-4091.1994
  • Black DS, Kelly AJ, Mardis MJ, et al. Structure and organization of Hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol. 1991;173(18):5732–5739. doi:10.1128/jb.173.18.5732-5739.1991
  • Schumacher MA, Piro KM, Xu W, et al. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science. 2009;323(5912):396–401. doi:10.1126/science.1163806
  • Lobato-Marquez D, Moreno-Cordoba I, Figueroa V, et al. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep. 2015;5:9374. doi:10.1038/srep09374
  • Xie Y, Wei Y, Shen Y, et al. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018;46(D1):D749–D753. doi:10.1093/nar/gkx1033
  • Winther KS, Gerdes K. Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase. Mol Microbiol. 2009;72(4):918–930. doi:10.1111/j.1365-2958.2009.06694.x
  • Jurenas D, Fraikin N, Goormaghtigh F, et al. Biology and evolution of bacterial toxin-antitoxin systems. Nat Rev Microbiol. 2022;20(6):335–350. doi:10.1038/s41579-021-00661-1
  • Hauryliuk V, Atkinson GC, Murakami KS, et al. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015;13(5):298–309. doi:10.1038/nrmicro3448
  • Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2013;154(5):1140–1150. doi:10.1016/j.cell.2013.07.048
  • Winther KS, Gerdes K. Regulation of enteric vapBC transcription: induction by VapC toxin dimer-breaking. Nucleic Acids Res. 2012;40(10):4347–4357. doi:10.1093/nar/gks029
  • Yashiro Y, Zhang C, Sakaguchi Y, Suzuki T, Tomita K. Molecular basis of glycyl-tRNA(Gly) acetylation by TacT from Salmonella Typhimurium. Cell Rep. 2012;37(12):110130. doi:10.1016/j.celrep.2021.110130
  • Winther KS, Gerdes K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A. 2011;108(18):7403–7407. doi:10.1073/pnas.1019587108
  • Christensen SK, Mikkelsen M, Pedersen K, et al. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A. 2001;98(25):14328–14333. doi:10.1073/pnas.251327898
  • Pedersen K, Zavialov AV, Pavlov MY, et al. The bacterial toxin rele displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell. 2003;112(1):131–140. doi:10.1016/S0092-8674(02)01248-5
  • Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci. 2015;72(22):4341–4367. doi:10.1007/s00018-015-2010-3
  • Goormaghtigh F, Fraikin N, Putrins M, et al. Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. mBio. 2018;9(3). doi:10.1128/mBio.00640-18
  • Kurata T, Brodiazhenko T, Alves Oliveira SR, et al. RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Mol Cell. 2021;81(15):3160–3170 e3169. doi:10.1016/j.molcel.2021.06.005