204
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Molecular Mechanism of Staphylococcus xylosus Resistance Against Tylosin and Florfenicol

, , , , , , , , & show all
Pages 6165-6176 | Received 20 Jun 2022, Accepted 16 Sep 2022, Published online: 26 Oct 2022

References

  • Wilson DN, Hauryliuk V, Atkinson GC, O’Neill AJ. Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol. 2020;18(11):1–12. doi:10.1038/s41579-020-0386-z
  • Fan L, Xiao HP. 范琳, 肖和平. 世界卫生组织发布的耐药结核病指南带来的思考与挑战[J]. 中华结核和呼吸杂志 [The thinking and challenge from the drug-resistant tuberculosis guidelines by World Health Organization]. Zhonghua jie he he hu xi za zhi. 2018;41(1):3–5. [ Chinese]. doi:10.3760/cma.j.issn.1001-0939.2018.01.003
  • Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S, Kanpravidth W, Brown R, Sommanustweechai A. Antimicrobial resistance: from global agenda to national strategic plan, Thailand. Bull World Health Organ. 2017;95(8):599–603. doi:10.2471/BLT.16.179648
  • Charmpi C, Veken DVD, Reckem EV, Vuyst LD, Leroy F. Raw meat quality and salt levels affect the bacterial species diversity and community dynamics during the fermentation of pork mince. Food Microbiol. 2020;89:103434. doi:10.1016/j.fm.2020.103434
  • Visscher AD, Piepers S, Haesebrouck F, Supre K, Vliegher SD. Coagulase-negative Staphylococcus species in bulk milk: prevalence, distribution, and associated subgroup- and species-specific risk factors. J Dairy Sci. 2017;100(1):629–642. doi:10.3168/jds.2016-11476
  • Wang D, Zhao L, Su R, Jin Y. Effects of different starter culture combinations on microbial counts and physico-chemical properties in dry fermented mutton sausages. Food Sci Nutr. 2019;7(6):1957–1968. doi:10.1002/fsn3.989
  • Rissi DR, Elsmo EJ, Sanchez S. Cystitis and peritonitis caused by Staphylococcus xylosus infection in a calf. Braz J Vet Pathol. 2015;8:99–101.
  • Giordano N, Corallo C, Miracco C, et al. Erythema nodosum associated with Staphylococcus xylosus septicemia. J Microbiol Immunol Infect. 2016;49(1):134–137. doi:10.1016/j.jmii.2012.10.003
  • Jabbar H, Al-Mathkhury F, Flaih MT, Khalil H. Histopathological effects of S. xylosus peptidoglycan in comparison to E. coli lipopolysaccharide in the urinary tract of mice. Turk J Med Sci. 2014;42(1):1278–1285.
  • Seif SS, El-Rehewy MS, Ghazaly MM, Abd-Elhamid MH. Biofilm formation by blood stream staphylococcal isolates from febrile pediatric cancer patients at south Egypt cancer institute. J Am Sci. 2011;7(1):674–686.
  • Omran AS, Hussein AN. Molecular investigation of mecgene among coagulase negative Staphylococcus isolated from different cases. J Phys Conf Ser. 2019;1234:012074.
  • Wang J, Qu Q, Liu X, Cui W, Li Y. 1-Hydroxyanthraquinone exhibited antibacterial activity by regulating glutamine synthetase of Staphylococcus xylosus as a virulence factor. Biomed Pharmacother. 2020;123:109779. doi:10.1016/j.biopha.2019.109779
  • Macfadyen AC, Leroy S, Harrison EM, Parkhill J, Paterson GK, Paterson GK. Staphylococcus pseudoxylosus sp. nov., isolated from bovine mastitis. Int J Syst Evol Microbiol. 2019;69:8. doi:10.1099/ijsem.0.003416
  • Klibi A, Jouini A, Andolsi RBE, Kmiha S, Maaroufi A. Epidemiology of β -lactamase-producing staphylococci and gram negative bacteria as cause of clinical bovine mastitis in Tunisia. Biomed Res Int. 2019;2019:1–9. doi:10.1155/2019/2165316
  • Ndahetuye JB, Persson Y, Nyman AK, Tukei M, Ongol MP, Bge R. Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Springer Open Choice. 2019;51(7):2037–2044.
  • De Almeida CC, Pizauro LJL, Soltes GA, et al. Some coagulase negative Staphylococcus spp. isolated from Buffalo can be misidentified as Staphylococcus aureus by phenotypic and Sa442 PCR methods. BMC Res Notes. 2018;11:1. doi:10.1186/s13104-018-3449-8
  • Russo M, Invernizzi A, Gobbi A, Radaelli E. Diffuse scaling dermatitis in an athymic nude mouse. Vet Pathol. 2013;50(4):722–726. doi:10.1177/0300985812463408
  • Baqer BAA, Mahdi LH. Biofilm formation and antibiotic resistance of coagulase-negative staphylococci isolated from lactating women with mastitis in Baghdad, Iraq. Indian J Public Health Res Dev. 2019;10(10):2175. doi:10.5958/0976-5506.2019.03175.9
  • Claudia G, Bonetto CC, Vissio C, et al. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina - ScienceDirect. Revista Argentina de Microbiología. 2016;48(1):50–56. doi:10.1016/j.ram.2015.12.001
  • Lüthje P, Schwarz S. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide-lincosamide resistance phenotypes and genotypes. J Antimicrob Chemoth. 2006;57(5):966–969. doi:10.1093/jac/dkl061
  • Kot B, Piechota M, Antos-Bielska M, et al. Antimicrobial resistance and genotypes of staphylococci from bovine milk and the cowshed environment. Pol J Vet Sci. 2012;15(4):741–749. doi:10.2478/v10181-012-0113-4
  • Resch M, Nagel V, Hertel C. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Int J Food Microbiol. 2008;127(1–2):99–104. doi:10.1016/j.ijfoodmicro.2008.06.013
  • Botrel MA, Haenni M, Morignat E, Sulpice P, Madec JY, Calavas D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhone-Alpes, France. Foodborne Pathog Dis. 2010;7(5):479–487. doi:10.1089/fpd.2009.0425
  • Piessens V, Coillie EV, Verbist B, et al. Distribution of coagulase-negative Staphylococcus species from milk and environment of dairy cows differs between herds. J Dairy Sci. 2011;94(6):2933–2944. doi:10.3168/jds.2010-3956
  • Dean Z. Antibiotic interactions, collateral sensitivity, and the evolution of multidrug resistance in E. faecalis; 2019.
  • Klinge S, Woolford JL. Ribosome assembly coming into focus. Nat Rev Mol Cell Biol. 2018;20(2):116–134.
  • Hansen JL, Moore PB, Steitz TA. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. In: Structural Insights into Gene Expression and Protein Synthesis. World Scientific Pub Co Inc; 2020.
  • Ea S, Flemmich L, Ds K, Ns VL, Micura R, Ys P. Structural basis for the context-specific action of classic peptidyl transferase inhibitors. Cold Spring Harbor Lab. 2021;29:152–161.
  • Martin L, Nilsson K, Lukk E, et al. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO J. 2009;28(6):736–744. doi:10.1038/emboj.2009.17
  • Syroegin EA, Flemmich L, Klepacki DS, Vazquez-Laslop NS, Polikanov YS. Structural basis for the context-specific action of classic peptidyl transferase inhibitors; 2021.
  • Liu X, Wang J, Chen M, Che R, Li Y. Comparative proteomic analysis reveals drug resistance of Staphylococcus xylosus ATCC700404 under tylosin stress. BMC Vet Res. 2019;15(1). doi:10.1186/s12917-019-1959-9
  • Zhou YH, Xu CG, Yang YB, et al. Histidine metabolism and IGPD play a key role in cefquinome inhibiting biofilm formation of Staphylococcus xylosus. Front Microbiol. 2018;9:665. doi:10.3389/fmicb.2018.00665
  • Brückner R. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol Lett. 2010;151(1):1–8. doi:10.1111/j.1574-6968.1997.tb10387.x
  • Xu CG, Yang YB, Zhou YH, et al. Comparative proteomic analysis provides insight into the key proteins as possible targets involved in aspirin inhibiting biofilm formation of Staphylococcus xylosus. Front Pharmacol. 2017;8:543. doi:10.3389/fphar.2017.00543
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi:10.1016/j.softx.2015.06.001
  • Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78(8):1950–1958. doi:10.1002/prot.22711
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49(21):6177–6196. doi:10.1021/jm051256o
  • Eyal Z, Matzov D, Krupkin M, et al. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci U S A. 2015;112(43):E5805–14. doi:10.1073/pnas.1517952112
  • Gentry D, Holmes D. Selection for high-level telithromycin resistance in Staphylococcus aureus yields mutants resulting from an rplB-to-rplV gene conversion-like event. Antimicrob Agents Chemother. 2008;52(3):1156–1158. doi:10.1128/AAC.00923-07
  • Brigitte M, Annie C, Bülent B, et al. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2200. doi:10.1128/AAC.46.7.2200-2207.2002
  • Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell. 2002;10(1):117–128. doi:10.1016/s1097-2765(02)00570-1
  • Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci. 2018;43(9):668–684. doi:10.1016/j.tibs.2018.06.011
  • Waterhouse A, Bertoni M, Bienert S, et al. Swiss-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi:10.1093/nar/gky427
  • Šponer J, Bussi G, Krepl M, et al. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev. 2018;118(8):4177–4338. doi:10.1021/acs.chemrev.7b00427
  • Descours G, Ginevra C, Jacotin N, et al. Ribosomal mutations conferring macrolide resistance in legionella pneumophila. Antimicrob Agents Chemother. 2017;61(3):e02188–16. doi:10.1128/AAC.02188-16
  • Bakan A, Meireles LM, Bahar I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics. 2011;27(11):1575–1577. doi:10.1093/bioinformatics/btr168
  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–435. doi:10.1038/nrmicro2333