194
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium Tuberculosis by Droplet Digital PCR

, , , , &
Pages 6245-6254 | Received 18 Jul 2022, Accepted 13 Oct 2022, Published online: 28 Oct 2022

References

  • World Health Organization. Global tuberculosis control. WHO report 2011; 2021. Geneva, Switzerland: World Health Organization. Available from: https://apps.who.int/iris/rest/bitstreams/1379788/retrieve. Accessed June 7, 2022.
  • Stagg HR, Lipman MC, McHugh TD, Jenkins HE. Isoniazid-resistant tuberculosis: a cause for concern? Int J Tuberc Lung Dis. 2017;21(2):129–139. doi:10.5588/ijtld.16.0716
  • O’Donnell M. Isoniazid Monoresistance: a Precursor to Multidrug-Resistant Tuberculosis? Ann Am Thorac Soc. 2018;15(3):306–307. doi:10.1513/AnnalsATS.201711-885ED
  • Manson AL, Cohen KA, Abeel T, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017;49(3):395–402. doi:10.1038/ng.3767
  • Cohen KA, Abeel T, Manson McGuire A, et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 2015;12(9):e1001880. doi:10.1371/journal.pmed.1001880
  • The Editors null. Hetero-resistance: an under-recognised confounder in diagnosis and therapy? J Med Microbiol. 2001;50(12):1018–1020. doi:10.1099/0022-1317-50-12-1018
  • Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol. 2019;17(8):479–496. doi:10.1038/s41579-019-0218-1
  • Zetola NM, Shin SS, Tumedi KA, et al. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J Clin Microbiol. 2014;52(7):2422–2429. doi:10.1128/JCM.02489-13
  • Ley SD, de Vos M, Van Rie A, Warren RM. Deciphering within-host microevolution of Mycobacterium tuberculosis through Whole-genome sequencing: the phenotypic impact and way forward. Microbiol Mol Biol Rev. 2019;83(2):e00062–e000618. doi:10.1128/MMBR.00062-18
  • Folkvardsen DB, Thomsen VØ, Rigouts L, et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol. 2013;51(12):4220–4222. doi:10.1128/JCM.01602-13
  • Blakemore R, Story E, Helb D, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–2501. doi:10.1128/JCM.00128-10
  • Folkvardsen DB, Svensson E, Thomsen VØ, et al. Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis? J Clin Microbiol. 2013;51(5):1596–1599. doi:10.1128/JCM.00472-13
  • Eilertson B, Maruri F, Blackman A, Herrera M, Samuels DC, Sterling TR. High proportion of heteroheteroin gyrA and gyrB in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2014;58(6):3270–3275. doi:10.1128/AAC.02066-13
  • Operario DJ, Koeppel AF, Turner SD, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One. 2017;12(5):e0176522. doi:10.1371/journal.pone.0176522
  • Zhang X, Zhao B, Huang H, et al. Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing, China. J Antimicrob Chemother. 2013;68(7):1537–1542. doi:10.1093/jac/dkt082
  • Chakravorty S, Roh SS, Glass J, et al. Detection of isoniazid-, fluoroquinolone-, amikacin-, and kanamycin-resistant tuberculosis in an automated, multiplexed 10-color assay suitable for point-of-care use. J Clin Microbiol. 2017;55(1):183–198. doi:10.1128/JCM.01771-16
  • Fan Y, Chen J, Liu M, et al. Application of droplet digital PCR to detection of Mycobacterium tuberculosis and Mycobacterium leprae infections: a narrative review. Infect Drug Resist. 2022;15:1067–1076. doi:10.2147/IDR.S349607
  • Nyaruaba R, Mwaliko C, Kering KK, Wei H. Droplet digital PCR applications in the tuberculosis world. Tuberculosis. 2019;117:85–92. doi:10.1016/j.tube.2019.07.001
  • Daum LT, Konstantynovska OS, Solodiankin OS, et al. Next-generation sequencing for characterizing drug resistance-conferring Mycobacterium tuberculosis genes from clinical isolates in the Ukraine. J Clin Microbiol. 2018;56(6):e00009–e000018. doi:10.1128/JCM.00009-18
  • Liang B, Tan Y, Li Z, et al. Highly sensitive detection of isoniazid heteroresistance in Mycobacterium tuberculosis by deepmelt assay. J Clin Microbiol. 2018;56:2. doi:10.1128/JCM.01239-17
  • Yacoob FL, Philomina Jose B, Karunakaran Lelitha SD, Sreenivasan S. Primary multidrug resistant tuberculosis and utility of line probe assay for its detection in smear-positive sputum samples in a tertiary care hospital in South India. J Pathog. 2016;2016:6235618. doi:10.1155/2016/6235618
  • Whale AS, Cowen S, Foy CA, Huggett JF. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS One. 2013;8(3):e58177. doi:10.1371/journal.pone.0058177
  • Pholwat S, Stroup S, Foongladda S, Houpt E. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One. 2013;8(2):e57238. doi:10.1371/journal.pone.0057238
  • Hu S, Li G, Li H, et al. Rapid detection of isoniazid resistance in Mycobacterium tuberculosis isolates by use of real-time-PCR-based melting curve analysis. J Clin Microbiol. 2014;52(5):1644–1652. doi:10.1128/JCM.03395-13
  • Banu S, Pholwat S, Foongladda S, et al. Performance of TaqMan array card to detect TB drug resistance on direct specimens. PLoS One. 2017;12(5):e0177167. doi:10.1371/journal.pone.0177167
  • Jain A, Singh PK, Chooramani G, Dixit P, Malhotra HS. Drug resistance and associated genetic mutations among patients with suspected MDR-TB in Uttar Pradesh, India. Int J Tuberc Lung Dis. 2016;20(7):870–875. doi:10.5588/ijtld.15.0874
  • Nikam C, Patel R, Sadani M, et al. Redefining MTBDRplus test results: what do indeterminate results actually mean? Int J Tuberc Lung Dis. 2016;20(2):154–159. doi:10.5588/ijtld.15.0319
  • Hofmann-Thiel S, van Ingen J, Feldmann K, et al. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. Eur Respir J. 2009;33(2):368–374. doi:10.1183/09031936.00089808
  • Tolani MP, D’souza DTB, Mistry NF. Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplus assay and their implication for treatment outcomes in patients from Mumbai, India. BMC Infect Dis. 2012;12:9. doi:10.1186/1471-2334-12-9
  • Shivekar SS, Kaliaperumal V, Brammacharry U, et al. Prevalence and factors associated with multidrug-resistant tuberculosis in South India. Sci Rep. 2020;10(1):17552. doi:10.1038/s41598-020-74432-y
  • Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55(5):2032–2041. doi:10.1128/AAC.01550-10
  • Rodwell TC, Valafar F, Douglas J, et al. Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations. J Clin Microbiol. 2014;52(3):781–789. doi:10.1128/JCM.02701-13