179
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical Efficacy, Antibiotic Resistance Genes, Virulence Factors and Outcome of Hospital-Acquired Pneumonia Induced by Klebsiella pneumoniae Carbapenemase 2-Producing with Tigecycline Treatment in the ICU

, , , , , , & ORCID Icon show all
Pages 5545-5555 | Received 07 Jul 2022, Accepted 07 Sep 2022, Published online: 21 Sep 2022

References

  • Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in gram-negative bacteria. Clin Infect Dis. 2019;69(Suppl 7):S521–S528. doi:10.1093/cid/ciz824
  • Hu F, Wang M, Zhu D, Wang F. CHINET efforts to control antimicrobial resistance in China. J Glob Antimicrob Resist. 2020;21:76–77. doi:10.1016/j.jgar.2020.03.007
  • Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–5884. doi:10.1128/AAC.01019-15
  • Bertolini G, Nattino G, Tascini C, et al. Mortality attributable to different Klebsiella susceptibility patterns and to the coverage of empirical antibiotic therapy: a cohort study on patients admitted to the ICU with infection. Intensive Care Med. 2018;44(10):1709–1719. doi:10.1007/s00134-018-5360-0
  • Han R, Shi Q, Wu S, et al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol. 2020;10:314. doi:10.3389/fcimb.2020.00314
  • Di Tella D, Tamburro M, Guerrizio G, Fanelli I, Sammarco ML, Ripabelli G. Molecular epidemiological insights into colistin-resistant and carbapenemases-producing clinical Klebsiella pneumoniae isolates. Infect Drug Resist. 2019;12:3783–3795. doi:10.2147/IDR.S226416
  • Karakonstantis S, Kritsotakis EI, Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48(6):835–851. doi:10.1007/s15010-020-01520-6
  • Bai XR, Jiang DC, Yan SY. High-dose tigecycline in elderly patients with pneumonia due to multidrug-resistant Acinetobacter baumannii in intensive care unit. Infect Drug Resist. 2020;13:1447–1454. doi:10.2147/IDR.S249352
  • Bai XR, Liu JM, Jiang DC, Yan SY. Efficacy and safety of tigecycline monotherapy versus combination therapy for the treatment of hospital-acquired pneumonia (HAP): a meta-analysis of cohort studies. J Chemother. 2018;30(3):172–178. doi:10.1080/1120009X.2018.1425279
  • Bassetti M, Peghin M. How to manage KPC infections. Ther Adv Infect Dis. 2020;7:2049936120912049. doi:10.1177/2049936120912049
  • Fergadaki S, Renieris G, Machairas N, et al. Efficacy of tigecycline alone or in combination for experimental infections by KPC carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents. 2021;58(3):106384. doi:10.1016/j.ijantimicag.2021.106384
  • Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–950. doi:10.1093/cid/cis588
  • Wyres KL, Lam M, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–359. doi:10.1038/s41579-019-0315-1
  • Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112(27):E3574–E3581. doi:10.1073/pnas.1501049112
  • Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18:37–46. doi:10.1016/S1473-3099(17)30489-9
  • Zeng L, Deng Q, Zeng T, Liu Y, Zhang J, Cao X. Prevalence of carbapenem-resistant Klebsiella pneumoniae infection in Southern China: clinical characteristics, antimicrobial resistance, virulence, and geographic distribution. Microb Drug Resist. 2020;26:483–491. doi:10.1089/mdr.2018.0401
  • Andrey DO, Pereira DP, Martins W, et al. An emerging clone, Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae sequence type 16, associated with high mortality rates in a CC258-endemic setting. Clin Infect Dis. 2020;71:e141–141e150. doi:10.1093/cid/ciz1095
  • Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated Pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–61e111. doi:10.1093/cid/ciw353
  • Niederman MS. Hospital-acquired pneumonia, health care-associated pneumonia, ventilator-associated pneumonia, and ventilator-associated tracheobronchitis: definitions and challenges in trial design. Clin Infect Dis. 2010;51(Suppl 1):S12–S17. doi:10.1086/653035
  • Smith C, Burley C, Ireson M, et al. Clincial trials of antibacterial agents:a practical guide to design and analysis. J Antimicrob Chemother. 1998;41(4):467-480. doi:10.1093/jac/41.4.467
  • Elcocks E, Adukwu EC. Laboratory evaluation of the Sigma Transwab(R) transport system for the recovery of Candida species using the Clinical and Laboratory Standards Institute (CLSI) document M40-A2. Eur J Clin Microbiol Infect Dis. 2021;40:735–738. doi:10.1007/s10096-020-04062-9
  • Wang HSY, Wang MNY, Ma YJR. Expert consensus on operating procedures for tigecycline in vitro susceptibility testing. Chin J Lab Med. 2013;36:584–587.
  • Zhao J, Liu C, Liu Y, et al. Genomic characteristics of clinically important ST11 Klebsiella pneumoniae strains worldwide. J Glob Antimicrob Resist. 2020;22:519–526. doi:10.1016/j.jgar.2020.03.023
  • Karlsson M, Stanton RA, Ansari U, et al. Identification of a carbapenemase-producing hypervirulent Klebsiella pneumoniae isolate in the United States. Antimicrob Agents Chemother. 2019;63. doi:10.1128/AAC.00519-19
  • Agyeman AA, Bergen PJ, Rao GG, Nation RL, Landersdorfer CB. A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections. Int J Antimicrob Agents. 2020;55(1):105833. doi:10.1016/j.ijantimicag.2019.10.014
  • Marchaim D, Pogue JM, Tzuman O, et al. Major variation in MICs of tigecycline in Gram-negative bacilli as a function of testing method. J Clin Microbiol. 2014;52(5):1617–1621. doi:10.1128/JCM.00001-14
  • Papadimitriou-Olivgeris M, Bartzavali C, Nikolopoulou A, et al. Impact of tigecycline’s MIC in the outcome of critically ill patients with carbapenemase-producing Klebsiella pneumoniae bacteraemia treated with tigecycline monotherapy-validation of 2019ʹs EUCAST proposed breakpoint changes. Antibiotics. 2020;9:1–8. doi:10.3390/antibiotics9110828
  • Falagas ME, Vardakas KZ, Tsiveriotis KP, Triarides NA, Tansarli GS. Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int J Antimicrob Agents. 2014;44:1–7. doi:10.1016/j.ijantimicag.2014.01.006
  • Kispal B, Walker S. Monte Carlo simulation evaluation of tigecycline dosing for bacteria with raised minimum inhibitory concentrations in non-critically ill adults. Eur J Clin Pharmacol. 2021;77(2):197–205. doi:10.1007/s00228-020-02998-7
  • Shelenkov A, Mikhaylova Y, Yanushevich Y, et al. Molecular typing, characterization of antimicrobial resistance, virulence profiling and analysis of whole-genome sequence of clinical Klebsiella pneumoniae isolates. Antibiotics. 2020;9:261. doi:10.3390/antibiotics9050261
  • Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis. 2020;26:289–297. doi:10.3201/eid2602.190594
  • Yang J, Ye L, Guo L, et al. A nosocomial outbreak of KPC-2-producing Klebsiella pneumoniae in a Chinese hospital: dissemination of ST11 and emergence of ST37, ST392 and ST395. Clin Microbiol Infect. 2013;19(11):E509–E515. doi:10.1111/1469-0691.12275
  • Ripabelli G, Sammarco ML, Salzo A, Scutellà M, Felice V, Tamburro M. New Delhi metallo-β-lactamase (NDM-1)-producing Klebsiella pneumoniae of sequence type ST11: first identification in a hospital of central Italy. Lett Appl Microbiol. 2020;71(6):652–659. doi:10.1111/lam.13384
  • Nordmann P, Poirel L, Carrër A, Toleman MA, Walsh TR. How to detect NDM-1 producers. J Clin Microbiol. 2011;49(2):718–721. doi:10.1128/JCM.01773-10
  • Li M, Xiao Y, Li P, et al. Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol. 2020;165:2799–2806. doi:10.1007/s00705-020-04822-0
  • Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32. doi:10.1128/CMR.00001-19
  • Panjaitan N, Horng YT, Cheng SW, Chung WT, Soo PC. EtcABC, a putative EII complex, regulates type 3 fimbriae via CRP-cAMP signaling in Klebsiella pneumoniae. Front Microbiol. 2019;10:1558. doi:10.3389/fmicb.2019.01558
  • Huang YJ, Wu CC, Chen MC, Fung CP, Peng HL. Characterization of the type 3 fimbriae with different MrkD adhesins: possible role of the MrkD containing an RGD motif. Biochem Biophys Res Commun. 2006;350:537–542. doi:10.1016/j.bbrc.2006.09.070
  • Gomez-Simmonds A, Uhlemann A. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae. J INFECT DIS. 2017;215:S18–18S27. doi:10.1093/infdis/jiw378
  • Zheng JX, Lin ZW, Chen C, et al. Biofilm formation in Klebsiella pneumoniae bacteremia strains was found to be associated with CC23 and the presence of wcaG. Front Cell Infect Microbiol. 2018;8:21. doi:10.3389/fcimb.2018.00021
  • Pan YJ, Lin TL, Chen CT, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. 2015;5:15573. doi:10.1038/srep15573