784
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Rapid Molecular Assays for the Diagnosis of Drug-Resistant Tuberculosis

, ORCID Icon &
Pages 4971-4984 | Published online: 29 Aug 2022

References

  • World Health Organisation. Global tuberculosis report 2021; 2021.
  • World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 3: Diagnosis–Rapid Diagnostics for Tuberculosis Detection. World Health Organization; 2021.
  • Bulterys MA, Wagner B, Redard-Jacot M, et al. Point-of-care urine LAM tests for tuberculosis diagnosis: a status update. J Clin Med. 2020;9(1):111. doi:10.3390/jcm9010111
  • García-Basteiro AL, DiNardo A, Saavedra B, et al. Point of care diagnostics for tuberculosis. Pulmonology. 2018;24(2):73–85. doi:10.1016/j.rppnen.2017.12.002
  • Dheda K, Ruhwald M, Theron G, Peter J, Yam WC. Point‐of‐care diagnosis of tuberculosis: past, present and future. Respirology. 2013;18(2):217–232. doi:10.1111/resp.12022
  • Branigan D. AN ACTIVIST’S. GUIDE to “Tuberculosis Diagnostic Tools”. New York, NY, USA: Treatment Action Group; 2020.
  • Schito M, Peter TF, Cavanaugh S, et al. Opportunities and challenges for cost-efficient implementation of new point-of-care diagnostics for HIV and tuberculosis. J Infect Dis. 2012;205(suppl_2):S169–S180. doi:10.1093/infdis/jis044
  • Ryu YJ. Diagnosis of pulmonary tuberculosis: recent advances and diagnostic algorithms. Tuberc Respir Dis. 2015;78(2):64–71. doi:10.4046/trd.2015.78.2.64
  • Harries A. Tuberculosis and human immunodeficiency virus infection in developing countries. Lancet. 1990;335:387–390. doi:10.1016/0140-6736(90)90216-R
  • Peter JG, Theron G, Muchinga TE, Govender U, Dheda K, Goletti D. The diagnostic accuracy of urine-based Xpert MTB/RIF in HIV-infected hospitalized patients who are smear-negative or sputum scarce. PLoS One. 2012;7(7):e39966. doi:10.1371/journal.pone.0039966
  • Peter JG, Theron G, van Zyl-Smit R, et al. Diagnostic accuracy of a urine lipoarabinomannan strip-test for TB detection in HIV-infected hospitalised patients. Eur Respir J. 2012;40(5):1211–1220. doi:10.1183/09031936.00201711
  • Paris L, Magni R, Zaidi F, et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med. 2017;9(420). doi:10.1126/scitranslmed.aal2807
  • Cannas A, Goletti D, Girardi E, et al. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2008;12(2):146–151.
  • Oreskovic A, Panpradist N, Marangu D, et al. Diagnosing pulmonary tuberculosis by using sequence-specific purification of urine cell-free DNA. J Clin Microbiol. 2021;59(8):e0007421. doi:10.1128/JCM.00074-21
  • Atherton RR, Cresswell FV, Ellis J, et al. Detection of Mycobacterium tuberculosis in urine by Xpert MTB/RIF Ultra: a useful adjunctive diagnostic tool in HIV-associated tuberculosis. Int J Infect Dis. 2018;75:92–94. doi:10.1016/j.ijid.2018.07.007
  • Horváth I, Hunt J, Barnes PJ, et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26(3):523–548. doi:10.1183/09031936.05.00029705
  • Chen D, Bryden NA, Bryden WA, et al. Non-volatile organic compounds in exhaled breath particles correspond to active tuberculosis. Sci Rep. 2022;12(1):7919. doi:10.1038/s41598-022-12018-6
  • Chen D, Bryden WA, Wood R. Detection of tuberculosis by the analysis of exhaled breath particles with high-resolution mass spectrometry. Sci Rep. 2020;10(1):7647. doi:10.1038/s41598-020-64637-6
  • Zijenah LS. The world health organization recommended TB diagnostic tools. Tuberculosis. 2018;2:71–90.
  • Hobby GL, Holman AP, Iseman MD, Jones JM. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 1973;4(2):94–104. doi:10.1128/AAC.4.2.94
  • Cudahy P, Shenoi SV. Diagnostics for pulmonary tuberculosis. Postgrad Med J. 2016;92(1086):187–193. doi:10.1136/postgradmedj-2015-133278
  • Harries AD, Kumar A. Challenges and progress with diagnosing pulmonary tuberculosis in low-and middle-income countries. Diagnostics. 2018;8(4):78. doi:10.3390/diagnostics8040078
  • Cruciani M, Scarparo C, Malena M, Bosco O, Serpelloni G, Mengoli C. Meta-analysis of BACTEC MGIT 960 and BACTEC 460 TB, with or without solid media, for detection of mycobacteria. J Clin Microbiol. 2004;42(5):2321–2325. doi:10.1128/JCM.42.5.2321-2325.2004
  • Ardito F, Posteraro B, Sanguinetti M, Zanetti S, Fadda G. Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2001;39(12):4440–4444. doi:10.1128/JCM.39.12.4440-4444.2001
  • Schön T, Miotto P, Köser CU, Viveiros M, Böttger E, Cambau E. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect. 2017;23(3):154–160. doi:10.1016/j.cmi.2016.10.022
  • Campbell EA, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901–912. doi:10.1016/S0092-8674(01)00286-0
  • Steingart KR, Sohn H, Schiller I, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2013;(1). doi:10.1002/14651858.CD009593.pub2
  • Wang S, Zhao B, Song Y, et al. Molecular characterization of the rpoB gene mutations of Mycobacterium tuberculosis isolated from China. J Tuberc Res. 2013;01(01):1–8. doi:10.4236/jtr.2013.11001
  • Bunsow E, Ruiz-Serrano MJ, Roa PL, Kestler M, Viedma DG, Bouza E. Evaluation of GeneXpert MTB/RIF for the detection of Mycobacterium tuberculosis and resistance to rifampin in clinical specimens. J Infect. 2014;68(4):338–343. doi:10.1016/j.jinf.2013.11.012
  • Ochang EA, Udoh UA, Emanghe UE, et al. Evaluation of rifampicin resistance and 81-bp rifampicin resistant determinant region of rpoB gene mutations of Mycobacterium tuberculosis detected with XpertMTB/Rif in Cross River State, Nigeria. Int J Mycobacteriol. 2016;5(5):145. doi:10.1016/j.ijmyco.2016.09.007
  • Ramasamy P, Sounderrajan V, Harshavardhan S, Harshavardhan S. Current perceptions on advanced molecular diagnostics for drug-resistant Mycobacterium tuberculosis. Biomed Pharmacol J. 2021;14(3):1249–1257. doi:10.13005/bpj/2226
  • Nguyen TNA, Berre A-L, Bañuls A-L, Nguyen TVA. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol. 2019;10:794. doi:10.3389/fmicb.2019.00794
  • Lee H, Seong M, Park S, et al. Diagnostic accuracy of Xpert® MTB/RIF on bronchoscopy specimens in patients with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis. 2013;17(7):917–921. doi:10.5588/ijtld.12.0885
  • Scott LE, Beylis N, Nicol M, et al. Diagnostic accuracy of Xpert MTB/RIF for extrapulmonary tuberculosis specimens: establishing a laboratory testing algorithm for South Africa. J Clin Microbiol. 2014;52(6):1818–1823. doi:10.1128/JCM.03553-13
  • Sharma SK, Kohli M, Yadav RN, et al. Evaluating the diagnostic accuracy of Xpert MTB/RIF assay in pulmonary tuberculosis. PLoS One. 2015;10(10):e0141011. doi:10.1371/journal.pone.0141011
  • Allahyartorkaman M, Mirsaeidi M, Hamzehloo G, Amini S, Zakiloo M, Nasiri MJ. Low diagnostic accuracy of Xpert MTB/RIF assay for extrapulmonary tuberculosis: a multicenter surveillance. Sci Rep. 2019;9(1):1–6. doi:10.1038/s41598-019-55112-y
  • Bahr NC, Nuwagira E, Evans EE, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis. 2018;18(1):68–75. doi:10.1016/S1473-3099(17)30474-7
  • Mekkaoui L, Hallin M, Mouchet F, et al. Performance of Xpert MTB/RIF Ultra for diagnosis of pulmonary and extra-pulmonary tuberculosis, one year of use in a multi-centric hospital laboratory in Brussels, Belgium. PLoS One. 2021;16(4):e0249734. doi:10.1371/journal.pone.0249734
  • Nicol MP, Workman L, Prins M, et al. Accuracy of Xpert MTB/RIF Ultra for the diagnosis of pulmonary tuberculosis in children. Pediatr Infect Dis J. 2018;37(10):e261–e3. doi:10.1097/INF.0000000000001960
  • Moure R, Martín R, Alcaide F. Effectiveness of an integrated real-time PCR method for detection of the Mycobacterium tuberculosis complex in smear-negative extrapulmonary samples in an area of low tuberculosis prevalence. J Clin Microbiol. 2012;50(2):513–515. doi:10.1128/JCM.06467-11
  • Rasheed W, Rao NA, Adel H, Baig MS, Adil SO. Diagnostic accuracy of Xpert MTB/RIF in sputum smear-negative pulmonary tuberculosis. Cureus. 2019;11(8):e5391. doi:10.7759/cureus.5391
  • Khadka P, Thapaliya J, Basnet RB, Ghimire GR, Amatya J, Rijal BP. Diagnosis of tuberculosis from smear-negative presumptive TB cases using Xpert MTB/Rif assay: a cross-sectional study from Nepal. BMC Infect Dis. 2019;19(1):1090. doi:10.1186/s12879-019-4728-2
  • Sanchez-Padilla E, Merker M, Beckert P, et al. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med. 2015;372(12):1181–1182. doi:10.1056/NEJMc1413930
  • Manson AL, Cohen KA, Abeel T, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017;49(3):395–402. doi:10.1038/ng.3767
  • Clouse K, Page-Shipp L, Dansey H, et al. Implementation of Xpert MTB/RIF for routine point-of-care diagnosis of tuberculosis at the primary care level. South Afr Med J. 2012;102(10):805–807. doi:10.7196/SAMJ.5851
  • Hanrahan C, Clouse K, Bassett J, et al. The patient impact of point-of-care vs. laboratory placement of Xpert® MTB/RIF. Int J Tuberc Lung Dis. 2015;19(7):811–816. doi:10.5588/ijtld.15.0013
  • Hanrahan CF, Selibas K, Deery CB, et al. Time to treatment and patient outcomes among TB suspects screened by a single point-of-care xpert MTB/RIF at a primary care clinic in Johannesburg, South Africa. PLoS One. 2013;8(6):e65421. doi:10.1371/journal.pone.0065421
  • Theron G, Zijenah L, Chanda D, et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet. 2014;383(9915):424–435. doi:10.1016/S0140-6736(13)62073-5
  • Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(6):451–461. doi:10.1016/S2213-2600(15)00095-8
  • Marcy O, Ung V, Goyet S, et al. Performance of Xpert MTB/RIF and alternative specimen collection methods for the diagnosis of tuberculosis in HIV-infected children. Clin Infect Dis. 2016;62(9):1161–1168. doi:10.1093/cid/ciw036
  • Schnippel K, Meyer‐Rath G, Long L, et al. Scaling up Xpert MTB/RIF technology: the costs of laboratory‐vs. clinic‐based roll‐out in South Africa. Trop Med Int Health. 2012;17(9):1142–1151. doi:10.1111/j.1365-3156.2012.03028.x
  • Theron G. Point‐of‐care technologies for the diagnosis of active tuberculosis. Mol Microbiol. 2016;556–579. doi:10.1128/9781555819071.ch40
  • Churchyard GJ, Stevens WS, Mametja LD, et al. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Global Health. 2015;3(8):e450–e457. doi:10.1016/S2214-109X(15)00100-X
  • Cox HS, Mbhele S, Mohess N, et al. Impact of Xpert MTB/RIF for TB diagnosis in a primary care clinic with high TB and HIV prevalence in South Africa: a pragmatic randomised trial. PLoS Med. 2014;11(11):e1001760. doi:10.1371/journal.pmed.1001760
  • Theron G, Peter J, Calligaro G, et al. Determinants of PCR performance (Xpert MTB/RIF), including bacterial load and inhibition, for TB diagnosis using specimens from different body compartments. Sci Rep. 2014;4(1):1–10.
  • Theron G, Peter J, Dowdy D, Langley I, Squire SB, Dheda K. Do high rates of empirical treatment undermine the potential effect of new diagnostic tests for tuberculosis in high-burden settings? Lancet Infect Dis. 2014;14(6):527–532. doi:10.1016/S1473-3099(13)70360-8
  • Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio. 2017;8(4):e00812–e00817. doi:10.1128/mBio.00812-17
  • Perez-Risco D, Rodriguez-Temporal D, Valledor-Sanchez I, Alcaide F, Land GA. Evaluation of the Xpert MTB/RIF Ultra assay for direct detection of Mycobacterium tuberculosis complex in smear-negative extrapulmonary samples. J Clin Microbiol. 2018;56(9):e00659–18. doi:10.1128/JCM.00659-18
  • Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76–84. doi:10.1016/S1473-3099(17)30691-6
  • Kohli M, Schiller I, Dendukuri N, et al. Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2021;(1). doi:10.1002/14651858.CD012768.pub3
  • Sabi I, Rachow A, Mapamba D, et al. Xpert MTB/RIF Ultra assay for the diagnosis of pulmonary tuberculosis in children: a multicentre comparative accuracy study. J Infect. 2018;77(4):321–327. doi:10.1016/j.jinf.2018.07.002
  • Wang G, Wang S, Jiang G, et al. Xpert MTB/RIF Ultra improved the diagnosis of paucibacillary tuberculosis: a prospective cohort study. J Infect. 2019;78(4):311–316. doi:10.1016/j.jinf.2019.02.010
  • Mishra H, Reeve BW, Palmer Z, et al. Xpert MTB/RIF Ultra and Xpert MTB/RIF for diagnosis of tuberculosis in an HIV-endemic setting with a high burden of previous tuberculosis: a two-cohort diagnostic accuracy study. Lancet Respir Med. 2020;8(4):368–382. doi:10.1016/S2213-2600(19)30370-4
  • Cepheid. Xpert MTB-XDR English Package Insert 302–351. 4 Rev A; 2020.
  • Cao Y, Parmar H, Gaur RL, et al. Xpert MTB/XDR: a 10-color reflex assay suitable for point-of-care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from Mycobacterium tuberculosis-positive sputum. J Clin Microbiol. 2021;59(3):e02314–e02320. doi:10.1128/JCM.02314-20
  • Georghiou SB, Penn-Nicholson A, de Vos M, et al. Analytical performance of the Xpert MTB/XDR® assay for tuberculosis and expanded resistance detection. Diagn Microbiol Infect Dis. 2021;101(1):115397. doi:10.1016/j.diagmicrobio.2021.115397
  • Xie YL, Chakravorty S, Armstrong DT, et al. Evaluation of a rapid molecular drug-susceptibility test for tuberculosis. N Engl J Med. 2017;377(11):1043–1054. doi:10.1056/NEJMoa1614915
  • Penn-Nicholson A, Georghiou SB, Ciobanu N, et al. Clinical evaluation of the Xpert MTB/XDR assay for rapid detection of isoniazid, fluoroquinolone, ethionamide and second-line drug resistance: a cross-sectional multicentre diagnostic accuracy study. medRxiv. 2021. doi:10.1101/2021.05.06.21256505
  • Bainomugisa A, Gilpin C, Coulter C, Marais BJ. New xpert MTB/XDR: added value and future in the field. Eur Respiratory Soc. 2020;56(5):2003616. doi:10.1183/13993003.03616-2020
  • Truenat. MTB-RIF Dx English Package Insert; 2018.
  • Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur Respir J. 2021;58(5):2100526. doi:10.1183/13993003.00526-2021
  • Kohli M, MacLean E, Pai M, Denkinger CM. Web Annex 4.8. Moderate complexity automated NAATs: diagnostic accuracy for TB detection and detection of resistance to rifampicin and isoniazid. A systematic review and meta-analysis. WHO consolidated guidelines on tuberculosis Module 3: diagnosis–rapid diagnostics for tuberculosis detection; 2021:181.
  • Araya BT, Ali KE, Geleta DA, Tekele SG, Tulu KD, Quinn F. Performance of the Abbott RealTime MTB and RIF/INH resistance assays for the detection of Mycobacterium tuberculosis and resistance markers in sputum specimens. PLoS One. 2021;16(5):e0251602. doi:10.1371/journal.pone.0251602
  • David A, Singh L, Da Silva P, Scott L, Stevens W. The performance of the Abbott real time MTB RIF/INH compared to the MTBDRplus V2 for the identification of MDR-TB among isolates. Infect Drug Resist. 2020;13:3301. doi:10.2147/IDR.S247524
  • Kostera J, Leckie G, Abravaya K, Wang H. Performance of the Abbott RealTime MTB RIF/INH resistance assay when used to test Mycobacterium tuberculosis specimens from Bangladesh. Infect Drug Resist. 2018;11:695. doi:10.2147/IDR.S158953
  • Scott L, David A, Noble L, et al. Performance of the Abbott RealTi me MTB and MTB RIF/INH assays in a setting of high tuberculosis and HIV coinfection in South Africa. J Clin Microbiol. 2017;55(8):2491–2501. doi:10.1128/JCM.00289-17
  • Wang M-G, Xue M, Wu S-Q, et al. Abbott RealTime MTB and MTB RIF/INH assays for the diagnosis of tuberculosis and rifampicin/isoniazid resistance. Infect Genet Evol. 2019;71:54–59. doi:10.1016/j.meegid.2019.03.012
  • Dickinson B. BD MAX™ multi drug resistant tuberculosis (MDR-TB) assay. Pack insert; 2020.
  • Sağiroğlu P, Atalay MA. Evaluation of the performance of the BD MAX MDR-TB test in the diagnosis of Mycobacterium tuberculosis complex in extrapulmonary and pulmonary samples. Expert Rev Mol Diagn. 2021;21(12):1361–1367. doi:10.1080/14737159.2021.1997594
  • Shah M, Paradis S, Betz J, et al. Multicenter study of the accuracy of the BD MAX™ MDR-TB assay for detection of Mycobacterium tuberculosis complex and mutations associated with resistance to rifampin and isoniazid. Clin Infect Dis. 2019;71(5):1161–1167.
  • Ciesielczuk H, Kouvas N, North N, Buchanan R, Tiberi S. Evaluation of the BD MAX™ MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur J Clin Microbiol Infect Dis. 2020;39(7):1321–1327. doi:10.1007/s10096-020-03847-2
  • Beutler M, Plesnik S, Mihalic M, et al. A pre-clinical validation plan to evaluate analytical sensitivities of molecular diagnostics such as BD MAX MDR-TB, Xpert MTB/Rif Ultra and FluoroType MTB. PLoS One. 2020;15(1):e0227215. doi:10.1371/journal.pone.0227215
  • Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical evaluation of BD MAX MDR-TB assay for direct detection of Mycobacterium tuberculosis complex and resistance markers. J Mol Diagn. 2020;22(10):1280–1286. doi:10.1016/j.jmoldx.2020.06.013
  • Gotuzzo E, King B, Dorman SE, et al. Multicenter study of the accuracy of the BD MAX MDR-TB assay for detection of Mycobacterium tuberculosis complex and mutations associated with resistance to rifampin and isoniazid. Clin Infect Dis. 2019. doi:10.1093/cid/ciz932
  • Nadarajan D, Hillemann D, Kamara R, et al. Evaluation of the Roche cobas MTB and MTB-RIF/INH assays in samples from Germany and Sierra Leone. J Clin Microbiol. 2021;59(5):e02983–20. doi:10.1128/JCM.02983-20
  • Scott L, David A, Govender L, et al. Performance of the Roche cobas MTB assay for the molecular diagnosis of pulmonary tuberculosis in a high HIV burden setting. J Mol Diagn. 2020;22(10):1225–1237. doi:10.1016/j.jmoldx.2020.06.018
  • de Vos M, Scott L, David A, et al. Comparative analytical evaluation of four centralized platforms for the detection of Mycobacterium tuberculosis complex and resistance to rifampicin and isoniazid. J Clin Microbiol. 2021;59(3):e02168–20. doi:10.1128/JCM.02168-20
  • Haasis C, Rupp J, Andres S, et al. Validation of the FluoroType® MTBDR assay using respiratory and lymph node samples. Tuberculosis. 2018;113:76–80. doi:10.1016/j.tube.2018.09.004
  • Svensson E, Folkvardsen DB, Rasmussen EM, Lillebaek T. Detection of Mycobacterium tuberculosis complex in pulmonary and extrapulmonary samples with the FluoroType MTBDR assay. Clin Microbiol Infect. 2021;27(10):1514.e1–1514.e4. doi:10.1016/j.cmi.2020.12.020
  • Dippenaar A, Derendinger B, Dolby T, et al. Diagnostic accuracy of the FluoroType MTB and MTBDR VER 2.0 assays for the centralised high throughput detection of Mycobacterium tuberculosis complex DNA and isoniazid and rifampicin resistance. Clin Microbiol Infect. 2021;27(9):1351.e1–1351.e4. doi:10.1016/j.cmi.2021.04.022
  • de Vos M, Derendinger B, Dolby T, et al. Diagnostic accuracy and utility of FluoroType MTBDR, a new molecular assay for multidrug-resistant tuberculosis. J Clin Microbiol. 2018;56(9):e00531–18. doi:10.1128/JCM.00531-18
  • Hillemann D, Haasis C, Andres S, Behn T, Kranzer K, Land GA. Validation of the FluoroType MTBDR assay for detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2018;56(6):e00072–18. doi:10.1128/JCM.00072-18
  • MacLean E, Kohli M, Weber SF, et al. Advances in molecular diagnosis of tuberculosis. J Clin Microbiol. 2020;58(10):e01582–19. doi:10.1128/JCM.01582-19
  • Mäkinen J, Marttila HJ, Marjamäki M, Viljanen MK, Soini H. Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2006;44(2):350–352. doi:10.1128/JCM.44.2.350-352.2006
  • Bang D, Bengård Andersen AS, Thomsen VØ. Rapid genotypic detection of rifampin-and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J Clin Microbiol. 2006;44(7):2605–2608. doi:10.1128/JCM.00752-06
  • Gamboa F, Cardona P, Manterola J, et al. Evaluation of a commercial probe assay for detection of rifampin resistance in Mycobacterium tuberculosis directly from respiratory and nonrespiratory clinical samples. Eur J Clin Microbiol Infect Dis. 1998;17(3):189–192. doi:10.1007/BF01691116
  • Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S. Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2005;43(8):3699–3703. doi:10.1128/JCM.43.8.3699-3703.2005
  • Tortoli E, Marcelli F. Use of the INNO LiPA Rif. TB for detection of Mycobacterium tuberculosis DNA directly in clinical specimens and for simultaneous determination of rifampin susceptibility. Eur J Clin Microbiol Infect Dis. 2007;26(1):51–55. doi:10.1007/s10096-006-0240-x
  • Bai Y, Wang Y, Shao C, Hao Y, GenoType JY, Chatterji D. MTBDR plus assay for rapid detection of multidrug resistance in Mycobacterium tuberculosis: a meta-analysis. PLoS One. 2016;11(3):e0150321. doi:10.1371/journal.pone.0150321
  • Nathavitharana RR, Hillemann D, Schumacher SG, et al. Multicenter noninferiority evaluation of Hain GenoType MTBDR plus version 2 and Nipro NTM+ MDRTB line probe assays for detection of rifampin and isoniazid resistance. J Clin Microbiol. 2016;54(6):1624–1630. doi:10.1128/JCM.00251-16
  • Dantas NGT, Suffys PN, Carvalho WDS, et al. Correlation between the BACTEC MGIT 960 culture system with Genotype MTBDRplus and TB-SPRINT in multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Mem Inst Oswaldo Cruz. 2017;112:769–774. doi:10.1590/0074-02760170062
  • Meaza A, Kebede A, Yaregal Z, et al. Evaluation of genotype MTBDR plus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis. 2017;17(1):1–8. doi:10.1186/s12879-017-2389-6
  • Dorman SE, Chihota VN, Lewis JJ, et al. Genotype MTBDRplus for direct detection of Mycobacterium tuberculosis and drug resistance in strains from gold miners in South Africa. J Clin Microbiol. 2012;50(4):1189–1194. doi:10.1128/JCM.05723-11
  • Tomasicchio M, Theron G, Pietersen E, et al. The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci Rep. 2016;6:17850. doi:10.1038/srep17850
  • World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance. World Health Organization; 2016. Report No.: 9241516135.
  • Javed H, Bakuła Z, Pleń M, et al. Evaluation of genotype MTBDRplus and MTBDRsl assays for rapid detection of drug resistance in extensively drug-resistant Mycobacterium tuberculosis isolates in Pakistan. Front Microbiol. 2018;9:2265. doi:10.3389/fmicb.2018.02265
  • Kiet VS, Lan NTN, An DD, et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2010;48(8):2934–2939. doi:10.1128/JCM.00201-10
  • Theron G, Peter J, Richardson M, Warren R, Dheda K, Steingart KR. GenoType ® MTBDR sl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev. 2016;2016(9). doi:10.1002/14651858.CD010705.pub3
  • Weyer K, Mirzayev F, Migliori GB, et al. Rapid molecular TB diagnosis: evidence, policy making and global implementation of Xpert MTB/RIF. Eur Respir J. 2013;42(1):252–271. doi:10.1183/09031936.00157212
  • Parsons LM, Somoskövi Á, Gutierrez C, et al. Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev. 2011;24(2):314–350. doi:10.1128/CMR.00059-10
  • Raviglione M, Marais B, Floyd K, et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet. 2012;379(9829):1902–1913. doi:10.1016/S0140-6736(12)60727-2
  • Matteelli A, Centis R, D’Ambrosio L, Migliori G. Multidrug-resistant tuberculosis today. SciELO Public Health. 2012;90:78.
  • World Health Organization. Development of a Target Product Profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease 2017 WHO collaborating centre for the evaluation of new diagnostic technologies. Geneva, Switzerland: World Health Organization; 2017.
  • Hanrahan CF, Shah M. Economic challenges associated with tuberculosis diagnostic development. Expert Rev Pharmacoecon Outcomes Res. 2014;14(4):499–510. doi:10.1586/14737167.2014.914438
  • Goletti D, Petruccioli E, Joosten SA, Ottenhoff TH. Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep. 2016;8(2):24–32. doi:10.4081/idr.2016.6568
  • Lessells RJ, Cooke GS, Newell M-L, Godfrey-Faussett P. Evaluation of tuberculosis diagnostics: establishing an evidence base around the public health impact. J Infect Dis. 2011;204(suppl_4):S1187–S95. doi:10.1093/infdis/jir412