198
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Cefmetazole Resistance Mechanism for Escherichia Coli Including ESBL-Producing Strains

, ORCID Icon, ORCID Icon &
Pages 5867-5878 | Received 12 Jul 2022, Accepted 20 Sep 2022, Published online: 10 Oct 2022

References

  • Paitan Y. Current trends in antimicrobial resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181–211. PMID: 30088148. doi:10.1007/82_2018_110
  • Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control. 2004;32(3):177–183. PMID: 15153930; PMCID: PMC2963581. doi:10.1016/j.ajic.2003.08.005
  • Riley DK, Classen DC, Stevens LE, Burke JP. A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am J Med. 1995;98(4):349–356. PMID: 7709947. doi:10.1016/S0002-9343(99)80313-1
  • Pickard R, Lam T, Maclennan G, et al. Types of urethral catheter for reducing symptomatic urinary tract infections in hospitalised adults requiring short-term catheterisation: multicentre randomised controlled trial and economic evaluation of antimicrobial- and antiseptic-impregnated urethral catheters (the CATHETER trial). Health Technol Assess. 2012;16(47):1–197. PMID: 23199586. doi:10.3310/hta16470
  • Yougbaré S, Mutalik C, Okoro G, et al. Emerging trends in nanomaterials for antibacterial applications. Int J Nanomedicine. 2021;16:5831–5867. PMID: 34475754; PMCID: PMC8405884. doi:10.2147/IJN.S328767
  • Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 2017;24(suppl_1):S44–S51. doi:10.1093/jtm/taw102
  • Toner L, Papa N, Aliyu SH, Dev H, Lawrentschuk N, Al-Hayek S. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in hospital urinary tract infections: incidence and antibiotic susceptibility profile over 9 years. World J Urol. 2016;34(7):1031–1037. PMID: 26511749. doi:10.1007/s00345-015-1718-x
  • Critchley IA, Cotroneo N, Pucci MJ, Jain A, Mendes RE. Resistance among urinary tract pathogens collected in Europe during 2018. J Glob Antimicrob Resist. 2020;23:439–444. PMID: 33212286. doi:10.1016/j.jgar.2020.10.020
  • Kobayashi K, Yamamoto S, Takahashi S, et al. The third national Japanese antimicrobial susceptibility pattern surveillance program: bacterial isolates from complicated urinary tract infection patients. J Infect Chemother. 2020;26(5):418–428. PMID: 32081647. doi:10.1016/j.jiac.2020.01.004
  • Chong Y, Shimoda S, Yakushiji H, et al. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol. 2013;62(Pt7):1038–1043. PMID: 23538565. doi:10.1099/jmm.0.059279-0
  • Doi Y, Park YS, Rivera JI, et al. Community-associated extended-spectrum β-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56(5):641–648. PMID: 23150211; PMCID: PMC3563390. doi:10.1093/cid/cis942
  • Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2021;72(7):e169–e183. PMID: 33106864. doi:10.1093/cid/ciaa1478
  • Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(12):2793–2803. PMID: 22915465. doi:10.1093/jac/dks301
  • Pangon B, Bizet C, Buré A, et al. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis. 1989;159(5):1005–1006. PMID: 2651531. doi:10.1093/infdis/159.5.1005
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2021.
  • Chetri S, Singha M, Bhowmik D, et al. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res Notes. 2019;12(1):138. PMID: 30871640; PMCID: PMC6419367. doi:10.1186/s13104-019-4177-4
  • Haldorsen B, Aasnaes B, Dahl KH, et al. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp1-like ampC element or hyperproduction of the endogenous AmpC. J Antimicrob Chemother. 2008;62(4):694–702. PMID: 18583329. doi:10.1093/jac/dkn257
  • Paltansing S, Tengeler AC, Kraakman ME, Claas EC, Bernards AT. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli. Microb Drug Resist. 2013;19(6):469–476. PMID: 23909485. doi:10.1089/mdr.2013.0058
  • Tomás M, Doumith M, Warner M, et al. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2010;54(5):2219–2224. PMID: 20194693; PMCID: PMC2863613. doi:10.1128/AAC.00816-09
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–2290. PMID: 23696619. doi:10.1093/jac/dkt178
  • Young K, Painter RE, Raghoobar SL, et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 2019;19(1):150. PMID: 31272373; PMCID: PMC6610938. doi:10.1186/s12866-019-1522-7
  • Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–584. PMID: 8665470; PMCID: PMC172876. doi:10.1128/CMR.8.4.557
  • Matsumura Y, Yamamoto M, Nagao M, Tanaka M, Takakura S, Ichiyama S. In vitro activities and detection performances of cefmetazole and flomoxef for extended-spectrum β-lactamase and plasmid-mediated AmpC β-lactamase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 2016;84(4):322–327. PMID: 26782634. doi:10.1016/j.diagmicrobio.2015.12.001
  • Gutiérrez-Gutiérrez B, Pérez-Galera S, Salamanca E, et al. A multinational, preregistered cohort study of β-Lactam/β-Lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(7):4159–4169. PMID: 27139473; PMCID: PMC4914653. doi:10.1128/AAC.00365-16
  • Tsutsui A, Yahara K, Shibayama K. Trends and patterns of national antimicrobial consumption in Japan from 2004 to 2016. J Infect Chemother. 2018;24(6):414–421. PMID: 29428566. doi:10.1016/j.jiac.2018.01.003
  • Ghai I, Ghai S. Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist. 2018;11:523–530. PMID: 29695921; PMCID: PMC5903844. doi:10.2147/IDR.S156995
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656. PMID: 14665678; PMCID: PMC309051. doi:10.1128/MMBR.67.4.593-656.2003
  • Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983;153(1):232–240. PMID: 6294048; PMCID: PMC217361. doi:10.1128/jb.153.1.232-240.1983
  • Phoenix DA. On the targeting and membrane assembly of the Escherichia coli outer membrane porin, PhoE. FEMS Immunol Med Microbiol. 1996;16(2):77–82. PMID: 8988389. doi:10.1111/j.1574-695X.1996.tb00125.x
  • Jacoby GA, Carreras I. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1990;34(5):858–862. doi:10.1128/AAC.34.5.858
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–816. PMID: 19100346; PMCID: PMC2696358. doi:10.1016/j.bbapap.2008.11.005
  • Ananthan S, Subha A. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli. Indian J Med Microbiol. 2005;23(1):20–23. PMID: 15928416. doi:10.4103/0255-0857.13867
  • Rowbury RJ, Goodson M, Wallace AD. The PhoE porin and transmission of the chemical stimulus for induction of acid resistance (acid habituation) in Escherichia coli. J Appl Bacteriol. 1992;72:233–243. doi:10.1111/j.1365-2672.1992.tb01829.x
  • Berrier C, Coulombe A, Houssin C, Ghazi A. Voltage-dependent cationic channel of Escherichia coli. J Membr Biol. 1993;133:119–127. doi:10.1007/BF00233793
  • Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31(2):e00079–17. doi:10.1128/CMR.00079-17
  • Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–182. doi:10.1128/CMR.00036-08
  • Nelson EC, Elisha BG. Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli. Antimicrob Agents Chemother. 1999;43(4):957–959. PMID: 10103209; PMCID: PMC89235. doi:10.1128/AAC.43.4.957
  • Caroff N, Espaze E, Gautreau D, Richet H, Reynaud A. Analysis of the effects of −42 and −32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. J Antimicrob Chemother. 2000;45(6):783–788. PMID: 10837430. doi:10.1093/jac/45.6.783
  • Bialek-Davenet S, Marcon E, Leflon-Guibout V, et al. In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55(6):2795–2802. PMID: 21464248; PMCID: PMC3101381. doi:10.1128/AAC.00156-11
  • Shlaes DM. New β-lactam-β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci. 2013;1277:105–114. PMID: 23346860. doi:10.1111/nyas.12010
  • Goldstein EJC, Citron DM, Tyrrell KL, Leoncio E, Merriam CV. Comparative in vitro activities of relebactam, imipenem, the combination of the two, and six comparator antimicrobial agents against 432 strains of anaerobic organisms, including imipenem-resistant strains. Antimicrob Agents Chemother. 2018;62(2):e01992–17. PMID: 29158284; PMCID: PMC5786751. doi:10.1128/AAC.01992-17
  • Yin H, Guiying L, Chen X, et al. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation. Appl Catal B. 2020;269:118829. doi:10.1016/j.apcatb.2020.118829
  • Chen M, Cai Y, Guiying L, Zhao H, Taicheng AN. The stress response mechanisms of biofilm formation under sub-lethal photocatalysis. Appl Catal B. 2022;307:121200. doi:10.1016/j.apcatb.2022.121200