1,347
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Candida lusitaniae: Biology, Pathogenicity, Virulence Factors, Diagnosis, and Treatment

, & ORCID Icon
Pages 5121-5135 | Published online: 31 Aug 2022

References

  • Aguiar Cordeiro R, de Jesus Evangelista AJ, Serpa R, et al. β-lactam antibiotics & vancomycin increase the growth & virulence of Candida spp. Future Microbiol. 2018;13(8):869–875. doi:10.2217/fmb-2018-0019
  • Goncalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol. 2016;42(6):905–927. doi:10.3109/1040841X.2015.1091805
  • Pfaller MA, Diekema DJ, Mendez M, et al. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol. 2006;44(10):3551–3556. doi:10.1128/JCM.00865-06
  • Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis. 1998;30(2):121–129. doi:10.1016/S0732-8893(97)00192-2
  • Pfaller M, Neofytos D, Diekema D, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004–2008. Diagn Microbiol Infect Dis. 2012;74(4):323–331. doi:10.1016/j.diagmicrobio.2012.10.003
  • Andes DR, Safdar N, Baddley JW, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis. 2016;18(6):921–931. doi:10.1111/tid.12613
  • Minari A, Hachem R, Raad I. Candida lusitaniae: a cause of breakthrough fungemia in cancer patients. Clin Infect Dis. 2001;32(2):186–190. doi:10.1086/318473
  • Fakhim H, Vaezi A, Dannaoui E, et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses. 2018;61(6):377–382. doi:10.1111/myc.12754
  • Fakhim H, Vaezi A, Javidnia J, et al. Candida africana vulvovaginitis: prevalence and geographical distribution. J Mycol Med. 2020;30(3):100966. doi:10.1016/j.mycmed.2020.100966
  • Hawkins JL, Baddour LM. Candida lusitaniae infections in the era of fluconazole availability. Clin Infect Dis. 2003;36(2):e14–18. doi:10.1086/344651
  • Baker JG, Nadler HL, Forgacs P, Kurtz SR. Candida lusitaniae: a new opportunistic pathogen of the urinary tract. Diagn Microbiol Infect Dis. 1984;2(2):145–149. doi:10.1016/0732-8893(84)90010-5
  • Sanchez V, Vazquez JA, Barth-Jones D, Dembry L, Sobel JD, Zervos MJ. Epidemiology of nosocomial acquisition of Candida lusitaniae. J Clin Microbiol. 1992;30(11):3005–3008. doi:10.1128/jcm.30.11.3005-3008.1992
  • Zhang H, Ran Y, Li D, et al. Clavispora lusitaniae and Chaetomium atrobrunneum as rare agents of cutaneous infection. Mycopathologia. 2010;169(5):373–380. doi:10.1007/s11046-009-9266-9
  • Jung DS, Farmakiotis D, Jiang Y, Tarrand JJ, Kontoyiannis DP. Uncommon Candida species fungemia among cancer patients, Houston, Texas, USA. Emerg Infect Dis. 2015;21(11):1942–1950. doi:10.3201/eid2111.150404
  • Obisesan OJ, Olowe OA, Taiwo SS. Phenotypic detection of genitourinary candidiasis among sexually transmitted disease clinic attendees in Ladoke Akintola University Teaching Hospital, Osogbo, Nigeria. J Environ Public Health. 2015;2015:401340. doi:10.1155/2015/401340
  • Hadfield TL, Smith MB, Winn RE, Rinaldi MG, Guerra C. Mycoses caused by Candida lusitaniae. Rev Infect Dis. 1987;9(5):1006–1012. doi:10.1093/clinids/9.5.1006
  • Boisnard S, Ruprich-Robert G, Florent M, Da Silva B, Chapeland-Leclerc F, Papon N. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Yeast. 2008;25(11):849–859. doi:10.1002/yea.1636
  • Zhang J, Silao FG, Bigol UG, et al. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae. PLoS One. 2012;7(8):e44192. doi:10.1371/journal.pone.0044192
  • McClenny NB, Fei H, Baron EJ, et al. Change in colony morphology of Candida lusitaniae in association with development of amphotericin B resistance. Antimicrob Agents Chemother. 2002;46(5):1325–1328. doi:10.1128/AAC.46.5.1325-1328.2002
  • Yoon SA, Vazquez JA, Steffan PE, Sobel JD, Akins RA. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother. 1999;43(4):836–845. doi:10.1128/AAC.43.4.836
  • Reedy JL, Floyd AM, Heitman J. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol. 2009;19(11):891–899. doi:10.1016/j.cub.2009.04.058
  • Gargeya IB, Pruitt WR, Simmons RB, Meyer SA, Ahearn DG. Occurrence of Clavispora lusitaniae, the teleomorph of Candida lusitaniae, among clinical isolates. J Clin Microbiol. 1990;28(10):2224–2227. doi:10.1128/jcm.28.10.2224-2227.1990
  • Francois F, Noel T, Pepin R, et al. Alternative identification test relying upon sexual reproductive abilities of Candida lusitaniae strains isolated from hospitalized patients. J Clin Microbiol. 2001;39(11):3906–3914. doi:10.1128/JCM.39.11.3906-3914.2001
  • Young LY, Lorenz MC, Heitman J. A STE12 homolog is required for mating but dispensable for filamentation in Candida lusitaniae. Gene. 2000;155(1):17–29.
  • Leite de Andrade MC, Soares de Oliveira MA, Santos F, et al. A new approach by optical coherence tomography for elucidating biofilm formation by emergent Candida species. PLoS One. 2017;12(11):e0188020. doi:10.1371/journal.pone.0188020
  • Diaz-Jimenez DF, Mora-Montes HM, Hernandez-Cervantes A, Luna-Arias JP, Gow NA, Flores-Carreon A. Biochemical characterization of recombinant Candida albicans mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan biosynthesis. Biochem Biophys Res Commun. 2012;419(1):77–82. doi:10.1016/j.bbrc.2012.01.131
  • Gomez-Gaviria M, Mora-Montes HM. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect Drug Resist. 2020;13:1673–1689. doi:10.2147/IDR.S247944
  • Mora-Montes HM, Ponce-Noyola P, Villagomez-Castro JC, Gow NA, Flores-Carreon A, Lopez-Romero E. Protein glycosylation in Candida. Future Microbiol. 2009;4(9):1167–1183. doi:10.2217/fmb.09.88
  • Estrada-Mata E, Navarro-Arias MJ, Perez-Garcia LA, et al. Members of the Candida parapsilosis complex and Candida albicans are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 2015;6:1527. doi:10.3389/fmicb.2015.01527
  • Gómez-Gaviria M, García-Carnero LC, Tamez-Castrellón AK, Mora-Montes HM. The cell wall of medically relevant yeasts and molds. In: Zaragoza Ó, Casadevall A, editors. Encyclopedia of Mycology. Oxford: Elsevier; 2021:12–22.
  • Hernandez-Chavez MJ, Clavijo-Giraldo DM, Novak A, et al. Role of protein mannosylation in the Candida tropicalis-host interaction. Front Microbiol. 2019;10:2743. doi:10.3389/fmicb.2019.02743
  • Hernandez-Chavez MJ, Franco B, Clavijo-Giraldo DM, Hernandez NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. FEMS Yeast Res. 2018;18(5). doi:10.1093/femsyr/foy053
  • Navarro-Arias MJ, Hernandez-Chavez MJ, Garcia-Carnero LC, et al. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 2019;12:783–794. doi:10.2147/IDR.S197531
  • Perez-Garcia LA, Csonka K, Flores-Carreon A, et al. Role of protein glycosylation in Candida parapsilosis cell wall integrity and host interaction. Front Microbiol. 2016;7:306. doi:10.3389/fmicb.2016.00306
  • Toth R, Nosek J, Mora-Montes HM, et al. Candida parapsilosis: from genes to the bedside. Clin Microbiol Rev. 2019;32(2). doi:10.1128/CMR.00111-18
  • Joshi KR, Wheeler EE, Gavin JB. The ultrastructure of Candida krusei. Mycopathologia. 1975;56(1):5–8. doi:10.1007/BF00493575
  • Grigor’eva A, Bardasheva A, Tupitsyna A, et al. Changes in the ultrastructure of Candida albicans treated with cationic peptides. Microorganisms. 2020;8(4):582.
  • Gómez-Gaviria M, Vargas-Macías AP, García-Carnero LC, Martínez-Duncker I, Mora-Montes HM. Role of protein glycosylation in interactions of medically relevant fungi with the host. J Fungi. 2021;7(10):875. doi:10.3390/jof7100875
  • Navarro-Arias MJ, Defosse TA, Dementhon K, et al. Disruption of protein mannosylation affects Candida guilliermondii cell wall, immune sensing, and virulence. Front Microbiol. 2016;7:1951. doi:10.3389/fmicb.2016.01951
  • Navarro-Arias MJ, Dementhon K, Defosse TA, et al. Group X hybrid histidine kinase Chk1 is dispensable for stress adaptation, host-pathogen interactions and virulence in the opportunistic yeast Candida guilliermondii. Res Microbiol. 2017;168(7):644–654. doi:10.1016/j.resmic.2017.04.009
  • Hernandez-Chavez MJ, Perez-Garcia LA, Nino-Vega GA, Mora-Montes HM. Fungal strategies to evade the host immune recognition. J Fungi. 2017;3(4):51. doi:10.3390/jof3040051
  • Gow NA, Netea MG, Munro CA, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis. 2007;196(10):1565–1571. doi:10.1086/523110
  • Mora-Montes HM, Netea MG, Ferwerda G, et al. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect Immun. 2011;79(5):1961–1970. doi:10.1128/IAI.01282-10
  • Walker LA, Munro CA. Caspofungin induced cell wall changes of Candida species influences macrophage interactions. Front Cell Infect Microbiol. 2020;10:164. doi:10.3389/fcimb.2020.00164
  • Shibata N, Kobayashi H, Suzuki S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(6):250–265. doi:10.2183/pjab.88.250
  • Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol. 2001;39(Suppl 1):1–8. doi:10.1080/mmy.39.1.1.8-0
  • Mora-Montes HM, Bates S, Netea MG, et al. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions. J Biol Chem. 2010;285(16):12087–12095. doi:10.1074/jbc.M109.081513
  • Mukaremera L, Lee KK, Mora-Montes HM, Gow NAR. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front Immunol. 2017;8:629. doi:10.3389/fimmu.2017.00629
  • Munro CA, Bates S, Buurman ET, et al. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem. 2005;280(2):1051–1060. doi:10.1074/jbc.M411413200
  • Shibata N, Kobayashi H, Okawa Y, Suzuki S. Existence of novel beta-1,2 linkage-containing side chain in the mannan of Candida lusitaniae, antigenically related to Candida albicans serotype A. Eur J Biochem. 2003;270(12):2565–2575. doi:10.1046/j.1432-1033.2003.03622.x
  • Gow NAR, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol spect. 2017;5(3). doi:10.1128/microbiolspec.FUNK-0035-2016
  • Díaz-Jiménez DF, Pérez-García LA, Martínez-álvarez JA, Mora-Montes HM. Role of the fungal cell wall in pathogenesis and antifungal resistance. Curr Fungal Infect Rep. 2012;6(4):275–282. doi:10.1007/s12281-012-0109-7
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 2012;10(2):112–122. doi:10.1038/nrmicro2711
  • Freer SN. Fermentation and aerobic metabolism of cellodextrins by yeasts. Appl Environ Microbiol. 1991;57(3):655–659. doi:10.1128/aem.57.3.655-659.1991
  • Lachance M-A. Chapter 21 - Clavispora Rodrigues de Miranda (1979). In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts. 5th ed. London: Elsevier; 2011:349–353.
  • Ene IV, Adya AK, Wehmeier S, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14(9):1319–1335. doi:10.1111/j.1462-5822.2012.01813.x
  • Priest SJ, Lorenz MC. Characterization of virulence-related phenotypes in Candida species of the CUG clade. Eukaryot Cell. 2015;14(9):931–940. doi:10.1128/EC.00062-15
  • Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature. 2014;506(7488):387–390. doi:10.1038/nature12891
  • Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–662. doi:10.1038/nature08064
  • Kannan A, Asner SA, Trachsel E, Kelly S, Parker J, Sanglard D. Comparative genomics for the elucidation of multidrug resistance in Candida lusitaniae. mBio. 2019;10(6):e02512–02519. doi:10.1128/mBio.02512-19
  • de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 2013;12(4):470–481. doi:10.1128/EC.00364-12
  • Willaert RG. Adhesins of yeasts: protein structure and interactions. J Fungi. 2018;4(4):119. doi:10.3390/jof4040119
  • Biasoli MS, Tosello ME, Magaró HM. Adherence of Candida strains isolated from the human gastrointestinal tract. Mycoses. 2002;45(11–12):465–469. doi:10.1046/j.1439-0507.2002.00793.x
  • de Repentigny L, Aumont F, Bernard K, Belhumeur P. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun. 2000;68(6):3172–3179. doi:10.1128/IAI.68.6.3172-3179.2000
  • Dorko E, Kmet’ová M, Marossy A, Dorko F, Molokácová M. Non-albicans Candida species isolated from plastic devices. Mycopathologia. 1999;148(3):117–122. doi:10.1023/A:1007178806720
  • Staniszewska M. Virulence factors in Candida species. Curr Protein Pept Sci. 2020;21(3):313–323. doi:10.2174/1389203720666190722152415
  • Nordin MA, Wan Harun WH, Abdul Razak F. An in vitro study on the anti-adherence effect of Brucea javanica and Piper betle extracts towards oral Candida. Arch Oral Biol. 2013;58(10):1335–1342. doi:10.1016/j.archoralbio.2013.07.001
  • Muadcheingka T, Tantivitayakul P. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: correlation between cell surface hydrophobicity and biofilm forming activities. Arch Oral Biol. 2015;60(6):894–901. doi:10.1016/j.archoralbio.2015.03.002
  • Panagoda GJ, Ellepola AN, Samaranayake LP. Adhesion to denture acrylic surfaces and relative cell-surface hydrophobicity of Candida parapsilosis and Candida albicans. APMIS. 1998;106(7):736–742. doi:10.1111/j.1699-0463.1998.tb00220.x
  • Bujdáková H, Didiášová M, Drahovská H, Černáková L. Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sci. 2013;8(3):259–262. doi:10.2478/s11535-013-0136-y
  • Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014;4:112. doi:10.3389/fcimb.2014.00112
  • Blanco MT, Morales JJ, Lucio L, Pérez-Giraldo C, Hurtado C, Gómez-García AC. Modification of adherence to plastic and to human buccal cells of Candida albicans and Candida dubliniensis by a subinhibitory concentration of itraconazole. Oral Microbiol Immunol. 2006;21(1):69–72. doi:10.1111/j.1399-302X.2005.00260.x
  • Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18(5):310–321. doi:10.1016/j.micinf.2016.01.002
  • Pathirana RU, McCall AD, Norris HL, Edgerton M. Filamentous non-albicans Candida species adhere to Candida albicans and benefit from dual biofilm growth. Front Microbiol. 2019;10:1188. doi:10.3389/fmicb.2019.01188
  • Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48(6):365–377. doi:10.1111/j.1439-0507.2005.01165.x
  • Pichová I, Pavlícková L, Dostál J, et al. Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. Inhibition with peptidomimetic inhibitors. Eur J Biochem. 2001;268(9):2669–2677. doi:10.1046/j.1432-1327.2001.02152.x
  • Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics. 2000;155(1):57–67. doi:10.1093/genetics/155.1.57
  • Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol. 2012;85(3):557–573. doi:10.1111/j.1365-2958.2012.08127.x
  • Zheng X, Wang Y, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 2004;23(8):1845–1856. doi:10.1038/sj.emboj.7600195
  • Miller NS, Dick JD, Merz WG. Phenotypic switching in Candida lusitaniae on copper sulfate indicator agar: association with amphotericin B resistance and filamentation. J Clin Microbiol. 2006;44(4):1536–1539. doi:10.1128/JCM.44.4.1536-1539.2006
  • Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science. 1990;248(4959):1112–1115. doi:10.1126/science.2188365
  • Gong Y, Li T, Yu C, Sun S. Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Front Cell Infect Microbiol. 2017;7(520):520. doi:10.3389/fcimb.2017.00520
  • Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550.
  • Martinez-Alvarez JA, Perez-Garcia LA, Flores-Carreon A, Mora-Montes HM. The immune response against Candida spp. and Sporothrix schenckii. Rev Iberoam Micol. 2014;31(1):62–66. doi:10.1016/j.riam.2013.09.015
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78. doi:10.1038/nrmicro1815
  • Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–642. doi:10.1038/nri3897
  • Reid DM, Gow NAR, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21(1):30–37. doi:10.1016/j.coi.2009.01.003
  • Vecchiarelli A, Bistoni F, Cenci E, Perito S, Cassone A. In-vitro killing of Candida species by murine immunoeffectors and its relationship to the experimental pathogenicity. Sabouraudia. 1985;23(5):377–387. doi:10.1080/00362178585380541
  • Høgåsen AK, Abrahamsen TG, Gaustad P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol. 1995;42(4):291–298. doi:10.1099/00222615-42-4-291
  • Aybay C, Imir T. Tumor necrosis factor (TNF) induction from monocyte/macrophages by Candida species. Immunobiology. 1996;196(4):363–374. doi:10.1016/S0171-2985(96)80059-3
  • Killick J, Morisse G, Sieger D, Astier AL. Complement as a regulator of adaptive immunity. Semin Immunopathol. 2018;40(1):37–48. doi:10.1007/s00281-017-0644-y
  • Singh DK, Tóth R, Gácser A. Mechanisms of pathogenic Candida species to Evade the host complement attack. Front Cell Infect Microbiol. 2020;10:94. doi:10.3389/fcimb.2020.00094
  • Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. doi:10.1038/cr.2009.139
  • Meri T, Hartmann A, Lenk D, et al. The yeast Candida albicans binds complement regulators factor H and FHL-1. Infect Immun. 2002;70(9):5185–5192. doi:10.1128/IAI.70.9.5185-5192.2002
  • Chi HW, Yang YS, Shang ST, et al. Candida albicans versus non-albicans bloodstream infections: the comparison of risk factors and outcome. J Microbiol Immunol Infect. 2011;44(5):369–375. doi:10.1016/j.jmii.2010.08.010
  • Khan Z, Ahmad S, Al-Sweih N, Khan S, Joseph L. Candida lusitaniae in Kuwait: prevalence, antifungal susceptibility and role in neonatal fungemia. PLoS One. 2019;14(3):e0213532. doi:10.1371/journal.pone.0213532
  • Luzzati R, Amalfitano G, Lazzarini L, et al. Nosocomial candidemia in non-neutropenic patients at an Italian tertiary care hospital. Eur J Clin Microbiol Infect Dis. 2000;19(8):602–607. doi:10.1007/s100960000325
  • Chow JK, Golan Y, Ruthazer R, et al. Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit. Clin Infect Dis. 2008;46(8):1206–1213. doi:10.1086/529435
  • Raja A, Park J. Disseminated Candida lusitaniae: nosocomial acquisition secondary to an indwelling urinary catheter. Case Rep Infect Dis. 2021;2021:6632730. doi:10.1155/2021/6632730
  • Simitsopoulou M, Kyrpitzi D, Velegraki A, Walsh TJ, Roilides E. Caspofungin at catheter lock concentrations eradicates mature biofilms of Candida lusitaniae and Candida guilliermondii. Antimicrob Agents Chemother. 2014;58(8):4953–4956. doi:10.1128/AAC.03117-14
  • Fowler SL, Rhoton B, Springer SC, Messer SA, Hollis RJ, Pfaller MA. Evidence for person-to-person transmission of Candida lusitaniae in a neonatal intensive-care unit. Infect Control Hosp Epidemiol. 1998;19(5):343–345. doi:10.2307/30141376
  • Guinet R, Chanas J, Goullier A, Bonnefoy G, Ambroise-Thomas P. Fatal septicemia due to amphotericin B-resistant Candida lusitaniae. J Clin Microbiol. 1983;18(2):443–444. doi:10.1128/jcm.18.2.443-444.1983
  • Merz WG. Candida lusitaniae: frequency of recovery, colonization, infection, and amphotericin B resistance. J Clin Microbiol. 1984;20(6):1194–1195. doi:10.1128/jcm.20.6.1194-1195.1984
  • Blinkhorn RJ, Adelstein D, Spagnuolo PJ. Emergence of a new opportunistic pathogen, Candida lusitaniae. J Clin Microbiol. 1989;27(2):236–240. doi:10.1128/jcm.27.2.236-240.1989
  • Desnos-Ollivier M, Moquet O, Chouaki T, Guérin AM, Dromer F. Development of echinocandin resistance in Clavispora lusitaniae during caspofungin treatment. J Clin Microbiol. 2011;49(6):2304–2306. doi:10.1128/JCM.00325-11
  • Parentin F, Liberali T, Perissutti P. Polymicrobial keratomycosis in a three-year-old child. Ocul Immunol Inflamm. 2006;14(2):129–131. doi:10.1080/09273940500328487
  • Huynh N, Chang HY, Borboli-Gerogiannis S. Ocular involvement in hospitalized patients with candidemia: analysis at a Boston tertiary care center. Ocul Immunol Inflamm. 2012;20(2):100–103. doi:10.3109/09273948.2011.646383
  • Apsemidou A, Füller MA, Idelevich EA, Kurzai O, Tragiannidis A, Groll AH. Candida lusitaniae breakthrough fungemia in an immuno-compromised adolescent: case report and review of the literature. J Fungi. 2020;6(4):380. doi:10.3390/jof6040380
  • Atkinson BJ, Lewis RE, Kontoyiannis DP. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol. 2008;46(6):541–546. doi:10.1080/13693780801968571
  • Holzschu DL, Presley HL, Miranda M, Phaff HJ. Identification of Candida lusitaniae as an opportunistic yeast in humans. J Clin Microbiol. 1979;10(2):202–205. doi:10.1128/jcm.10.2.202-205.1979
  • Steinbach WJ, Roilides E, Berman D, et al. Results from a prospective, international, epidemiologic study of invasive candidiasis in children and neonates. Pediatr Infect Dis J. 2012;31(12):1252–1257. doi:10.1097/INF.0b013e3182737427
  • Tragiannidis A, Fegeler W, Rellensmann G, et al. Candidaemia in a European Paediatric University Hospital: a 10-year observational study. Clin Microbiol Infect. 2012;18(2):E27–E30. doi:10.1111/j.1469-0691.2011.03720.x
  • Wawrysiuk S, Rechberger T, Futyma K, Miotła P. Candida lusitaniae - a case report of an intraperitoneal infection. Prz Menopauzalny. 2018;17(2):94–96. doi:10.5114/pm.2018.77310
  • Baumgartner C, Freydiere AM, Gille Y. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates. J Clin Microbiol. 1996;34(2):454–456. doi:10.1128/jcm.34.2.454-456.1996
  • Odds FC, Bernaerts R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol. 1994;32(8):1923–1929. doi:10.1128/jcm.32.8.1923-1929.1994
  • Cooke VM, Miles RJ, Price RG, Midgley G, Khamri W, Richardson AC. New chromogenic agar medium for the identification of Candida spp. Appl Environ Microbiol. 2002;68(7):3622–3627. doi:10.1128/AEM.68.7.3622-3627.2002
  • Deorukhkar SC, Roushani S. Identification of Candida species: conventional methods in the era of molecular diagnosis. Ann Microbiol Immunol. 2018;1(1):1002.
  • Essendoubi M, Toubas D, Bouzaggou M, Pinon JM, Manfait M, Sockalingum GD. Rapid identification of Candida species by FT-IR microspectroscopy. Biochim Biophys Acta. 2005;1724(3):239–247. doi:10.1016/j.bbagen.2005.04.019
  • Elie CM, Lott TJ, Reiss E, Morrison CJ. Rapid identification of Candida species with species-specific DNA probes. J Clin Microbiol. 1998;36(11):3260–3265. doi:10.1128/JCM.36.11.3260-3265.1998
  • Fujita S, Lasker BA, Lott TJ, Reiss E, Morrison CJ. Microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood. J Clin Microbiol. 1995;33(4):962–967. doi:10.1128/jcm.33.4.962-967.1995
  • Michel-Nguyen A, Favel A, Chastin C, Selva M, Regli P. Comparative evaluation of a commercial system for identification of Candida lusitaniae. Eur J Clin Microbiol Infect Dis. 2000;19(5):393–395. doi:10.1007/PL00011231
  • Campbell CK, Davey KG, Holmes AD, Szekely A, Warnock DW. Comparison of the API Candida system with the AUXACOLOR system for identification of common yeast pathogens. J Clin Microbiol. 1999;37(3):821–823. doi:10.1128/JCM.37.3.821-823.1999
  • Arendrup M, Horn T, Frimodt-Møller N. In vivo pathogenicity of eight medically relevant Candida species in an animal model. Infection. 2002;30(5):286–291. doi:10.1007/s15010-002-2131-0
  • Lockhart SR, Iqbal N, Cleveland AA, et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol. 2012;50(11):3435–3442. doi:10.1128/JCM.01283-12
  • Barchiesi F, Tortorano AM, Di Francesco LF, Cogliati M, Scalise G, Viviani MA. In-vitro activity of five antifungal agents against uncommon clinical isolates of Candida spp. J Antimicrob Chemother. 1999;43(2):295–299. doi:10.1093/jac/43.2.295
  • Favel A, Michel-Nguyen A, Peyron F, et al. Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: case report and review of the literature. Diagn Microbiol Infect Dis. 2003;47(1):331–339. doi:10.1016/S0732-8893(03)00094-4
  • Pfaller MA, Diekema DJ, Andes D, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14(3):164–176. doi:10.1016/j.drup.2011.01.004
  • Abruzzo GK, Flattery AM, Gill CJ, et al. Evaluation of the echinocandin antifungal MK-0991 (L-743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother. 1997;41(11):2333–2338. doi:10.1128/AAC.41.11.2333
  • Asner SA, Giulieri S, Diezi M, Marchetti O, Sanglard D. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob Agents Chemother. 2015;59(12):7715–7722. doi:10.1128/AAC.02204-15
  • Dunkel N, Blass J, Rogers PD, Morschhäuser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol. 2008;69(4):827–840. doi:10.1111/j.1365-2958.2008.06309.x
  • Krcmery V Jr, Oravcova E, Spanik S, et al. Nosocomial breakthrough fungaemia during antifungal prophylaxis or empirical antifungal therapy in 41 cancer patients receiving antineoplastic chemotherapy: analysis of aetiology risk factors and outcome. J Antimicrob Chemother. 1998;41(3):373–380. doi:10.1093/jac/41.3.373
  • Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis. 2000;30(4):662–678. doi:10.1086/313749
  • Bouchara JP, Zouhair R, Leb S, et al. In-vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol. 2000;49(11):977–984. doi:10.1099/0022-1317-49-11-977
  • Vargas K, Messer SA, Pfaller M, et al. Elevated phenotypic switching and drug resistance of Candida albicans from human immunodeficiency virus-positive individuals prior to first thrush episode. J Clin Microbiol. 2000;38(10):3595–3607. doi:10.1128/JCM.38.10.3595-3607.2000
  • Odds EC. Switch of phenotype as an escape mechanism of the intruder. Mycoses. 1997;40(Suppl 2):9–12. doi:10.1111/j.1439-0507.1997.tb00556.x
  • Peyron F, Favel A, Calaf R, Michel-Nguyen A, Bonaly R, Coulon J. Sterol and fatty acid composition of Candida lusitaniae clinical isolates. Antimicrob Agents Chemother. 2002;46(2):531–533. doi:10.1128/AAC.46.2.531-533.2002
  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–517. doi:10.1128/CMR.12.4.501
  • Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun. 2002;70(9):5256–5258. doi:10.1128/IAI.70.9.5256-5258.2002
  • Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM, Martinez-Lopez R, Monteoliva L, Gil C. The cell wall protein Ecm33 of Candida albicans is Involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance, and host–cell interaction. Front Microbiol. 2016;7:64. doi:10.3389/fmicb.2016.00064
  • Kempf M, Apaire-Marchais V, Saulnier P, et al. Disruption of Candida albicans IFF4 gene involves modifications of the cell electrical surface properties. Colloids Surf B: Biointer. 2007;58(2):250–255. doi:10.1016/j.colsurfb.2007.03.017
  • Gomez MJ, Torosantucci A, Arancia S, Maras B, Parisi L, Cassone A. Purification and biochemical characterization of a 65-kilodalton mannoprotein (MP65), a main target of anti-Candida cell-mediated immune responses in humans. Infect Immun. 1996;64(7):2577–2584. doi:10.1128/iai.64.7.2577-2584.1996
  • Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15(12):1150–1155. doi:10.1016/j.cub.2005.05.047
  • Burt ET, Daly R, Hoganson D, Tsirulnikov Y, Essmann M, Larsen B. Isolation and partial characterization of Hsp90 from Candida albicans. Ann Clin Lab Sci. 2003;33(1):86–93.
  • Chen CG, Yang YL, Shih HI, Su CL, Lo HJ. CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob Agents Chemother. 2004;48(12):4505–4512. doi:10.1128/AAC.48.12.4505-4512.2004
  • Araújo D, Henriques M, Silva S. Portrait of Candida species biofilm regulatory network genes. Trends Microbiol. 2017;25(1):62–75. doi:10.1016/j.tim.2016.09.004
  • Kenno S, Speth C, Rambach G, et al. Candida albicans factor H binding molecule Hgt1p – a low glucose-induced transmembrane protein is trafficked to the cell wall and impairs phagocytosis and killing by human neutrophils. Front Microbiol. 2019;9:3319. doi:10.3389/fmicb.2018.03319
  • Swidergall M, Ernst AM, Ernst JF. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrob Agents Chemother. 2013;57(8):3917–3922. doi:10.1128/AAC.00862-13
  • Marcil A, Gadoury C, Ash J, Zhang J, Nantel A, Whiteway M. Analysis of PRA1 and its relationship to Candida albicans- macrophage interactions. Infect Immun. 2008;76(9):4345–4358. doi:10.1128/IAI.00588-07
  • Leidich SD, Ibrahim AS, Fu Y, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem. 1998;273(40):26078–26086. doi:10.1074/jbc.273.40.26078
  • Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6(11):e1001181. doi:10.1371/journal.ppat.1001181