142
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Molecular Characteristics and Gonococcal Genetic Island Carrying Status of Thirty-Seven Neisseria gonorrhoeae Isolates in Eastern China

, , , , , & ORCID Icon show all
Pages 6545-6553 | Received 05 Aug 2022, Accepted 27 Oct 2022, Published online: 08 Nov 2022

References

  • Harrison OB, Clemence M, Dillard JP, et al. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J Infect. 2016;73(6):578–587. doi:10.1016/j.jinf.2016.08.010
  • Harrison OB, Cehovin A, Skett J, et al. Neisseria gonorrhoeae population genomics: use of the gonococcal core genome to improve surveillance of antimicrobial resistance. J Infect Dis. 2020;222(11):1816–1825. doi:10.1093/infdis/jiaa002
  • Shaskolskiy B, Kravtsov D, Kandinov I, et al. Comparative whole-genome analysis of Neisseria gonorrhoeae; isolates revealed changes in the gonococcal genetic island and specific genes as a link to antimicrobial resistance. Front Cell Infect Microbiol. 2022;12:831336. doi:10.3389/fcimb.2022.831336
  • Callaghan MM, Heilers JH, van der Does C, Dillard JP. Secretion of chromosomal DNA by the Neisseria gonorrhoeae type IV secretion system. Curr Top Microbiol Immunol. 2017;413:323–345. doi:10.1007/978-3-319-75241-9_13
  • Dillard JP, Seifert HS. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol. 2001;41(1):263–277. doi:10.1046/j.1365-2958.2001.02520.x
  • Jores J, Rumer L, Kiessling S, Kaper JB, Wieler LH. A novel locus of enterocyte effacement (LEE) pathogenicity island inserted at pheV in bovine Shiga toxin-producing Escherichia coli strain O103:H2. FEMS Microbiol Lett. 2001;204(1):75–79. doi:10.1111/j.1574-6968.2001.tb10866.x
  • Carniel E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 2001;3(7):561–569. doi:10.1016/S1286-4579(01)01412-5
  • Morschhäuser J, Köhler G, Ziebuhr W, et al. Evolution of microbial pathogens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1397):695–704. doi:10.1098/rstb.2000.0609
  • Arnold DL, Pitman A, Jackson RW. Pathogenicity and other genomic islands in plant pathogenic bacteria. Mol Plant Pathol. 2003;4(5):407–420. doi:10.1046/j.1364-3703.2003.00187.x
  • Jackson RW, Athanassopoulos E, Tsiamis G, et al. Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci U S A. 1999;96(19):10875–10880. doi:10.1073/pnas.96.19.10875
  • Gal-Mor O, Finlay BB. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol. 2006;8(11):1707–1719. doi:10.1111/j.1462-5822.2006.00794.x
  • Rivas LA, Mansfield J, Tsiamis G, Jackson RW, Murillo J. Changes in race-specific virulence in Pseudomonas syringae pv. phaseolicola are associated with a chimeric transposable element and rare deletion events in a plasmid-borne pathogenicity island. Appl Environ Microbiol. 2005;71(7):3778–3785. doi:10.1128/AEM.71.7.3778-3785.2005
  • Hacker J, Bender L, Ott M, et al. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog. 1990;8(3):213–225. doi:10.1016/0882-4010(90)90048-U
  • Novick RP, Fischetti VA, Novick RP. Pathogenicity islands and their role in staphylococcal biology. Microbiol Spectr. 2019;7(3). doi:10.1128/microbiolspec.GPP3-0062-2019
  • Noto JM, Peek RM. The helicobacter pylori cag pathogenicity island. Methods Mol Biol. 2012;921:41–50.
  • Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol. 2004;294(2–3):83–94. doi:10.1016/j.ijmm.2004.06.026
  • Lou L, Zhang P, Piao R, Wang Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front Cell Infect Microbiol. 2019;9:270. doi:10.3389/fcimb.2019.00270
  • Harrison EM, Carter ME, Luck S, et al. Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14. Infect Immun. 2010;78(4):1437–1446. doi:10.1128/IAI.00621-09
  • Murphy RA, Boyd EF. Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol. 2008;190(2):636–647. doi:10.1128/JB.00562-07
  • van Ulsen P, Tommassen J. Protein secretion and secreted proteins in pathogenic Neisseriaceae. FEMS Microbiol Rev. 2006;30(2):292–319. doi:10.1111/j.1574-6976.2006.00013.x
  • Callaghan MM, Klimowicz AK, Shockey AC, Kane J, Pepperell CS, Dillard JP. Transcriptional and translational responsiveness of the Neisseria gonorrhoeae type IV secretion system to conditions of host infections. Infect Immun. 2021;89(12):e0051921. doi:10.1128/IAI.00519-21
  • Mavroidi A, Tzelepi E, Siatravani E, et al. Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. J Clin Microbiol. 2011;49(4):1196–1201. doi:10.1128/JCM.02233-10
  • Yoon SH, Park YK, Lee S, et al. Towards pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids Res. 2007;35:D395–D400. doi:10.1093/nar/gkl790
  • CLSI. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • Wan C, Li Y, Le W, et al. Increasing resistance to azithromycin in Neisseria gonorrhoeae in Eastern Chinese cities: resistance mechanisms and genetic diversity among isolates from Nanjing. Antimicrob Agents Chemother. 2018;62(5). doi:10.1128/AAC.02499-17
  • Allen VG, Farrell DJ, Rebbapragada A, et al. Molecular analysis of antimicrobial resistance mechanisms in Neisseria gonorrhoeae isolates from Ontario, Canada. Antimicrob Agents Chemother. 2011;55(2):703–712. doi:10.1128/AAC.00788-10
  • Zheng Z, Chen H, Deng T, et al.Drug resistance mechanism and molecular characteristics of tetracycline-resistant Neisseria gonorrhoeae clinical isolates from a tertiary hospital. Chin J Microbiol Immunol. 2019;39(2):2.
  • Zheng Z, Liu L, Shen X, et al. Antimicrobial resistance and molecular characteristics among Neisseria gonorrhoeae Clinical isolates in A Chinese Tertiary Hospital. Infect Drug Resist. 2019;12:3301–3309. doi:10.2147/IDR.S221109
  • Unemo M, Seifert HS, Hook EW, et al. Gonorrhoea. Nat Rev Dis Primers. 2019;5(1):79. doi:10.1038/s41572-019-0128-6
  • Unemo M. Current and future antimicrobial treatment of gonorrhoea – the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis. 2015;15(1):364. doi:10.1186/s12879-015-1029-2
  • Hochhut B, Dobrindt U, Hacker J. Pathogenicity islands and their role in bacterial virulence and survival. Contrib Microbiol. 2005;12:234–254.
  • Nieto PA, Pardo-Roa C, Salazar-Echegarai FJ, et al. New insights about excisable pathogenicity islands in Salmonella and their contribution to virulence. Microbes Infect. 2016;18(5):302–309. doi:10.1016/j.micinf.2016.02.001
  • Zhang J, van der Veen S. Neisseria gonorrhoeae 23S rRNA A2059G mutation is the only determinant necessary for high-level azithromycin resistance and improves in vivo biological fitness. J Antimicrob Chemother. 2019;74(2):407–415. doi:10.1093/jac/dky438
  • Zola TA, Strange HR, Dominguez NM, Dillard JP, Cornelissen CN. Type IV secretion machinery promotes ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells. Infect Immun. 2010;78(6):2429–2437. doi:10.1128/IAI.00228-10
  • Ortiz Á, Santander M, E. P, Lugo PJ. Neisseria gonorrhoeae: un patógeno díscolo. Conceptos microbiológicos, resistencia a antimicrobianos y su vigilancia epidemiológica en Chile [Neisseria gonorrhoeae: a wayward pathogen. Microbiological concepts, antimicrobial resistance and its epidemiological surveillance in Chile]. Rev Chilena Infectol. 2021;38(4):512–522. Spanish. doi:10.4067/S0716-10182021000400512
  • Aitolo GL, Adeyemi OS, Afolabi BL, Owolabi AO. Neisseria gonorrhoeae antimicrobial resistance: past to present to future. Curr Microbiol. 2021;78(3):867–878. doi:10.1007/s00284-021-02353-8
  • Unemo M, Golparian D, Eyre DW. Antimicrobial Resistance in Neisseria gonorrhoeae and Treatment of Gonorrhea. Methods Mol Biol. 2019;1997:37–58.
  • Tang C, Holden D. Pathogen virulence genes--implications for vaccines and drug therapy. Br Med Bull. 1999;55(2):387–400. doi:10.1258/0007142991902448