463
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review

ORCID Icon, , &
Pages 7413-7430 | Received 27 Aug 2022, Accepted 23 Nov 2022, Published online: 14 Dec 2022

References

  • Lukacs NW, Smit JJ, Mukherjee S, Morris SB, Nunez G, Lindell DM. Respiratory virus-induced TLR7 activation controls IL-17–associated increased mucus via IL-23 regulation. J Immunol. 2010;185(4):2231–2239. doi:10.4049/jimmunol.1000733
  • Heminway B, Yu Y, Tanaka Y, et al. Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology. 1994;200(2):801–805. doi:10.1006/viro.1994.1245
  • Murawski MR, Bowen GN, Cerny AM, et al. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol. 2009;83(3):1492–1500. doi:10.1128/JVI.00671-08
  • Van der Gucht W, Leemans A, De Schryver M, et al. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection. Virol J. 2017;14(1):1–10. doi:10.1186/s12985-017-0824-3
  • Jafri HS, Wu X, Makari D, Henrickson KJ. Distribution of respiratory syncytial virus subtypes A and B among infants presenting to the emergency department with lower respiratory tract infection or apnea. Pediatr Infect Dis J. 2013;32(4):335–340. doi:10.1097/INF.0b013e318282603a
  • Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol. 2002;76(11):5654–5666. doi:10.1128/JVI.76.11.5654-5666.2002
  • Chirkova T, Lin S, Oomens AG, et al. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol. 2015;96(Pt 9):2543. doi:10.1099/vir.0.000218
  • Orumie UC, Bartholomew DC. Respiratory syncytial virus infection in infants: a comparative study using discriminant. Probit Logistic Regression Analysis. 2022;1:654.
  • Pickles RJ, DeVincenzo JP. Respiratory syncytial virus (RSV) and its propensity for causing bronchiolitis. J Pathol. 2015;235(2):266–276. doi:10.1002/path.4462
  • Siefker D, Vu L, You D, et al. Respiratory syncytial virus disease severity is associated with distinct CD8+ T cell profiles. Am Assoc Immnol. 2019;2:8465.
  • Domachowske JB, Rosenberg HF. Respiratory syncytial virus infection: immune response, immunopathogenesis, and treatment. Clin Microbiol Rev. 1999;12(2):298–309. doi:10.1128/CMR.12.2.298
  • CDC 24/7: respiratory Syncytial Virus Infection (RSV). Available from: https://www.cdc.gov/rsv/about/symptoms.html. Accessed November 24, 2022.
  • WHO. Respiratory Syncytial Virus Surveillance. Available from: https://www.who.int/teams/global-influenza-programme/global-respiratory-syncytial-virus-surveillance. Accessed November 24, 2022.
  • Gagro A, Tominac M, Kršulović-Hrešić V, et al. Increased Toll-like receptor 4 expression in infants with respiratory syncytial virus bronchiolitis. Clin Exp Immunol. 2004;135(2):267–272. doi:10.1111/j.1365-2249.2004.02364.x
  • Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol. 2000;1(5):398–401. doi:10.1038/80833
  • McDermott DS, Weiss KA, Knudson CJ, Varga SM. Central role of dendritic cells in shaping the adaptive immune response during respiratory syncytial virus infection. Future Virol. 2011;6(8):963–973. doi:10.2217/fvl.11.62
  • Granot T, Senda T, Carpenter DJ, et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity. 2017;46(3):504–515. doi:10.1016/j.immuni.2017.02.019
  • Kerrin A, Fitch P, Errington C, et al. Differential lower airway dendritic cell patterns may reveal distinct endotypes of RSV bronchiolitis. Thorax. 2017;72(7):620–627. doi:10.1136/thoraxjnl-2015-207358
  • Weng K, Zhang J, Mei X, et al. Lower number of plasmacytoid dendritic cells in peripheral blood of children with bronchiolitis following respiratory syncytial virus infection. Influenza Other Respi Viruses. 2014;8(4):469–473. doi:10.1111/irv.12242
  • de Graaff PM, de Jong EC, van Capel TM, et al. Respiratory syncytial virus infection of monocyte-derived dendritic cells decreases their capacity to activate CD4 T cells. J Immunol. 2005;175(9):5904–5911. doi:10.4049/jimmunol.175.9.5904
  • Gill MA, Long K, Kwon T, et al. Differential recruitment of dendritic cells and monocytes to respiratory mucosal sites in children with influenza virus or respiratory syncytial virus infection. J Infect Dis. 2008;198(11):1667–1676. doi:10.1086/593018
  • Schijf MA, Lukens MV, Kruijsen D, et al. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies. PLoS One. 2013;8(11):e81695. doi:10.1371/journal.pone.0081695
  • Kim TH, Lee HK. Differential roles of lung dendritic cell subsets against respiratory virus infection. Immune Netw. 2014;14(3):128–137. doi:10.4110/in.2014.14.3.128
  • Pribul PK, Harker J, Wang B, et al. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol. 2008;82(9):4441–4448. doi:10.1128/JVI.02541-07
  • Makris S, Bajorek M, Culley FJ, Goritzka M, Johansson C. Alveolar macrophages can control respiratory syncytial virus infection in the absence of type I interferons. J Innate Immun. 2016;8(5):452–463. doi:10.1159/000446824
  • Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604. doi:10.1016/j.immuni.2010.05.007
  • Shirey KA, Pletneva LM, Puche AC, et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4Rα-, TLR4-, and IFN-β-dependent. Mucosal Immunol. 2010;3(3):291–300. doi:10.1038/mi.2010.6
  • Bhat R, Farrag MA, Almajhdi FN. Double-edged role of natural killer cells during RSV infection. Int Rev Immunol. 2020;39(5):233–244. doi:10.1080/08830185.2020.1770748
  • Zdrenghea M, Telcian AG, Laza-Stanca V, et al. RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. Eur Respir J. 2012;39(3):712–720. doi:10.1183/09031936.00099811
  • Li F, Zhu H, Sun R, Wei H, Tian Z. Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J Virol. 2012;86(4):2251–2258. doi:10.1128/JVI.06209-11
  • van Erp EA, Feyaerts D, Duijst M, et al. Respiratory syncytial virus infects primary neonatal and adult natural killer cells and affects their antiviral effector function. J Infect Dis. 2019;219(5):723–733. doi:10.1093/infdis/jiy566
  • Roduit C, Frei R, Ferstl R, et al. Late-Breaking Abstracts Presented At Scientific Sessions AAAAI Annual Meeting March 4-7, 2016. J Allergy Clin Immunol. 2016;137(2):89.
  • Lee SY, Noh Y, Goo JH, et al. Natural killer T cell sensitization during neonatal respiratory syncytial virus infection induces eosinophilic lung disease in re-infected adult mice. PLoS One. 2017;12(6):e0176940. doi:10.1371/journal.pone.0176940
  • Kirsebom F, Michalaki C, Agueda-Oyarzabal M, Johansson C. Neutrophils do not impact viral load or the peak of disease severity during RSV infection. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-57969-w
  • Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS. The histopathology of fatal untreated human respiratory syncytial virus infection. Modern Pathology. 2007;20(1):108–119. doi:10.1038/modpathol.3800725
  • Cortjens B, De Boer OJ, De Jong R, et al. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J Pathol. 2016;238(3):401–411. doi:10.1002/path.4660
  • Wang S-Z, Smith P, Lovejoy M, Bowden J, Alpers J, Forsyth K. The apoptosis of neutrophils is accelerated in respiratory syncytial virus (RSV)-induced bronchiolitis. Clin Exp Immunol. 1998;114(1):49–54. doi:10.1046/j.1365-2249.1998.00681.x
  • Sabbaghi A, Miri SM, Keshavarz M, Mahooti M, Zebardast A, Ghaemi A. Role of γδ T cells in controlling viral infections with a focus on influenza virus: implications for designing novel therapeutic approaches. Virol J. 2020;17(1):1–18. doi:10.1186/s12985-020-01449-0
  • Aoyagi M, Shimojo N, Sekine K, Nishimuta T, Kohno Y. Respiratory syncytial virus infection suppresses IFN-γ production of γδ T cells. Clin Exp Immunol. 2003;131(2):312–317. doi:10.1046/j.1365-2249.2003.02062.x
  • Stoppelenburg AJ, Salimi V, Hennus M, Plantinga M. Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection. PLoS One. 2013;8(10):e78461. doi:10.1371/journal.pone.0078461
  • Huang H, Saravia J, You D, Shaw AJ, Cormier SA. Impaired gamma delta T cell‐derived IL‐17A and inflammasome activation during early respiratory syncytial virus infection in infants. Immunol Cell Biol. 2015;93(2):126–135. doi:10.1038/icb.2014.79
  • Démoulins T, Brügger M, Zumkehr B, et al. The specific features of the developing T cell compartment of the neonatal lung are a determinant of respiratory syncytial virus immunopathogenesis. PLoS Pathog. 2021;17(4):e1009529. doi:10.1371/journal.ppat.1009529
  • Raiden S, Sananez I, Remes-Lenicov F, et al. Respiratory syncytial virus (RSV) infects CD4+ T cells: frequency of circulating CD4+ RSV+ T cells as a marker of disease severity in young children. J Infect Dis. 2017;215(7):1049–1058. doi:10.1093/infdis/jix070
  • Graham B, Bunton L, Wright P, Karzon D. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest. 1991;88(3):1026–1033. doi:10.1172/JCI115362
  • Anderson J, Norden J, Saunders D, Toms G, Scott R. Analysis of the local and systemic immune responses induced in BALB/c mice by experimental respiratory syncytial virus infection. J General Virol. 1990;71(7):1561–1570. doi:10.1099/0022-1317-71-7-1561
  • Cherrie AH, Anderson K, Wertz GW, Openshaw P. Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus. J Virol. 1992;66(4):2102–2110. doi:10.1128/jvi.66.4.2102-2110.1992
  • Srikiatkhachorn A, Braciale TJ. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J Exp Med. 1997;186(3):421–432. doi:10.1084/jem.186.3.421
  • Muñoz JL, McCarthy C, Clark M, Hall C. Respiratory syncytial virus infection in C57BL/6 mice: clearance of virus from the lungs with virus-specific cytotoxic T cells. J Virol. 1991;65(8):4494–4497. doi:10.1128/jvi.65.8.4494-4497.1991
  • Weiss KA, Christiaansen AF, Fulton RB, Meyerholz DK, Varga SM. Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection. J Immunol. 2011;187(6):3145–3154. doi:10.4049/jimmunol.1100764
  • Sun J, Cardani A, Sharma AK, et al. Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus. PLoS Pathog. 2011;7(8):e1002173. doi:10.1371/journal.ppat.1002173
  • Lukens MV, van de Pol AC, Coenjaerts FE, et al. A systemic neutrophil response precedes robust CD8+ T-cell activation during natural respiratory syncytial virus infection in infants. J Virol. 2010;84(5):2374–2383. doi:10.1128/JVI.01807-09
  • Siefker DT, Vu L, You D, et al. Respiratory syncytial virus disease severity is associated with distinct CD8+ T-cell profiles. Am J Respir Crit Care Med. 2020;201(3):325–334. doi:10.1164/rccm.201903-0588OC
  • Mukherjee S, Lindell DM, Berlin AA, et al. IL-17–induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol. 2011;179(1):248–258. doi:10.1016/j.ajpath.2011.03.003
  • Bermejo-Martin JF, Garcia-Arevalo MC, Lejarazu ROD, et al. Predominance of Th2 cytokines, CXC chemokines and innate immunity mediators at the mucosal level during severe respiratory syncytial virus infection in children. Eur Cytokine Netw. 2007;18(3):163.
  • Ye Q, Shao WX, Shang SQ, Pan YX, Shen HQ, Chen XJ. Epidemiological characteristics and immune status of children with Respiratory Syncytial Virus. J Med Virol. 2015;87(2):323–329. doi:10.1002/jmv.24047
  • Fernández JA, Roine I, Vasquez A, Cáneo M. Soluble interleukin-2 receptor (sCD25) and interleukin-10 plasma concentrations are associated with severity of primary respiratory syncytial virus (RSV) infection. Eur Cytokine Netw. 2005;16(1):81–90.
  • Sung RYT, Hui SHL, Wong CK, Lam CWK, Yin J. A comparison of cytokine responses in respiratory syncytial virus and influenza A infections in infants. Eur J Pediatr. 2001;160(2):117–122. doi:10.1007/s004310000676
  • Roumanes D, Falsey A, Quataert S, et al. T-cell responses in adults during natural respiratory syncytial virus infection. J Infect Dis. 2018;218(3):418–428. doi:10.1093/infdis/jiy016
  • Fulton RB, Meyerholz DK, Varga SM. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol. 2010;185(4):2382–2392. doi:10.4049/jimmunol.1000423
  • Lee DC, Harker JA, Tregoning JS, et al. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J Virol. 2010;84(17):8790–8798. doi:10.1128/JVI.00796-10
  • Durant LR, Makris S, Voorburg CM, Loebbermann J, Johansson C, Openshaw PJ. Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice. J Virol. 2013;87(20):10946–10954. doi:10.1128/JVI.01295-13
  • Zhivaki D, Lemoine S, Lim A, et al. Respiratory syncytial virus infects regulatory B cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity. 2017;46(2):301–314. doi:10.1016/j.immuni.2017.01.010
  • Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M. Regulatory B cells, A to Z. Allergy. 2021;76(9):2699–2715. doi:10.1111/all.14763
  • Openshaw PJ. RSV takes control of neonatal Breg cells: two hands on the wheel. Immunity. 2017;46(2):171–173. doi:10.1016/j.immuni.2017.01.011
  • Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci. 2014;35(2):86–102. doi:10.1016/j.tips.2013.11.006
  • Olszewska W, Ispas G, Schnoeller C, et al. Antiviral and lung protective activity of a novel respiratory syncytial virus fusion inhibitor in a mouse model. Eur Respir J. 2011;38(2):401–408. doi:10.1183/09031936.00005610
  • Roymans D, Alnajjar SS, Battles MB, et al. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nat Commun. 2017;8(1):1–15. doi:10.1038/s41467-017-00170-x
  • Rhodin M, McAllister N, Kim I, et al., EP-023938, A Novel Non-fusion Replication Inhibitor of Respiratory Syncytial Virus (RSV). Poster presented at 10th International Respiratory Syncytial Virus Symposium (RSV 2016), Patagonia, Argentina, 2016.
  • Razinkov V, Gazumyan A, Nikitenko A, Ellestad G, Krishnamurthy G. RFI-641 inhibits entry of respiratory syncytial virus via interactions with fusion protein. Chem Biol. 2001;8(7):645–659. doi:10.1016/S1074-5521(01)00042-4
  • Razinkov V, Huntley C, Ellestad G, Krishnamurthy G. RSV entry inhibitors block F-protein mediated fusion with model membranes. Antiviral Res. 2002;55(1):189–200. doi:10.1016/S0166-3542(02)00050-5
  • Huntley CC, Weiss WJ, Gazumyan A, et al. RFI-641, a potent respiratory syncytial virus inhibitor. Antimicrob Agents Chemother. 2002;46(3):841–847. doi:10.1128/AAC.46.3.841-847.2002
  • Ispas G, Koul A, Verbeeck J, et al. Antiviral activity of TMC353121, a respiratory syncytial virus (RSV) fusion inhibitor, in a non-human primate model. PLoS One. 2015;10(5):e0126959. doi:10.1371/journal.pone.0126959
  • Kocienski P. Synthesis of Ziresovir. Synfacts. 2019;15(10):1100.
  • Zheng X, Gao L, Wang L, et al. Discovery of Ziresovir as a Potent, Selective, and Orally Bioavailable Respiratory Syncytial Virus Fusion Protein Inhibitor. ACS Publications; 2019.
  • Esimone C, Eck G, Duong T, Überla K, Proksch P, Grunwald T. Potential anti-respiratory syncytial virus lead compounds from Aglaia species. Int J Pharmaceutical Sci. 2008;63(10):768–773.
  • Chu HY, Englund JA. Respiratory syncytial virus disease: prevention and treatment. In: Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Springer; 2013:235–258.
  • Maggon K, Barik S. New drugs and treatment for respiratory syncytial virus. Rev Med Virol. 2004;14(3):149–168. doi:10.1002/rmv.423
  • Krilov LR. Respiratory syncytial virus disease: update on treatment and prevention. Expert Rev Anti Infect Ther. 2011;9(1):27–32. doi:10.1586/eri.10.140
  • Parker WB. Metabolism and antiviral activity of ribavirin. Virus Res. 2005;107(2):165–171. doi:10.1016/j.virusres.2004.11.006
  • Leyssen P, Balzarini J, De Clercq E, Neyts J. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J Virol. 2005;79(3):1943–1947. doi:10.1128/JVI.79.3.1943-1947.2005
  • Pollack PF, Groothuis JR, Barbarotto G. Development and use of palivizumab (Synagis): a passive immunoprophylactic agent for RSV. J Infection Chemother. 2002;8(3):201–206. doi:10.1007/s10156-002-0178-6
  • Narayan O, Bentley A, Mowbray K, et al. Updated cost-effectiveness analysis of palivizumab (Synagis) for the prophylaxis of respiratory syncytial virus in infant populations in the UK. J Med Econ. 2020;23(12):1640–1652. doi:10.1080/13696998.2020.1836923
  • Bont L. Palivizumab (Synagis®). Handbook of Therapeutic Antibodies; 2014:1825–1854.
  • Cianci C, Meanwell N, Krystal M. Antiviral activity and molecular mechanism of an orally active respiratory syncytial virus fusion inhibitor. J Antimicrobial Chemother. 2005;55(3):289–292. doi:10.1093/jac/dkh558
  • Cianci C, Yu K-L, Combrink K, et al. Orally active fusion inhibitor of respiratory syncytial virus. Antimicrob Agents Chemother. 2004;48(2):413–422. doi:10.1128/AAC.48.2.413-422.2004
  • Feng S, Hong D, Wang B, et al. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors. ACS Med Chem Lett. 2015;6(3):359–362. doi:10.1021/acsmedchemlett.5b00008
  • Rhodin MH, McAllister NV, Castillo J, et al. EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLoS Pathog. 2021;17(3):e1009428. doi:10.1371/journal.ppat.1009428
  • Ahmad A, Eze K, Noulin N, et al. EDP-938, a respiratory syncytial virus inhibitor, in a human virus challenge. N Eng J Med. 2022;386(7):655–666. doi:10.1056/NEJMoa2108903
  • Cox RM, Toots M, Yoon -J-J, et al. Development of an allosteric inhibitor class blocking RNA elongation by the respiratory syncytial virus polymerase complex. J Biol Chem. 2018;293(43):16761–16777. doi:10.1074/jbc.RA118.004862
  • Coates M, Brookes D, Kim Y-I, et al. Preclinical characterization of PC786, an inhaled small-molecule respiratory syncytial virus L protein polymerase inhibitor. Antimicrob Agents Chemother. 2017;61(9):e00737–17. doi:10.1128/AAC.00737-17
  • Coates M, Brookes D, Allen H, et al. Preclinical characterization of PC786, a potent antiviral inhibitor of respiratory syncytial virus replication. virus. 2016;1:2.
  • Zhang G-N, Li Q, Zhao J, et al. Design and synthesis of 2-((1H-indol-3-yl) thio)-N-phenyl-acetamides as novel dual inhibitors of respiratory syncytial virus and influenza virus A. Eur J Med Chem. 2020;186:111861. doi:10.1016/j.ejmech.2019.111861
  • Brookes DW, Coates M, Allen H, et al. Late therapeutic intervention with a respiratory syncytial virus L‐protein polymerase inhibitor, PC786, on respiratory syncytial virus infection in human airway epithelium. Br J Pharmacol. 2018;175(12):2520–2534. doi:10.1111/bph.14221
  • Van der Gucht W. Characterization of Clinical Respiratory Syncytial Virus Isolates and the Effect of Protease Inhibitors on Early Viral Entry. University of Antwerp; 2019.
  • Vendeville S, Tahri A, Hu L, et al. Discovery of 3-({5-Chloro-1-[3-(methylsulfonyl) propyl]-1 H-indol-2-yl} methyl)-1-(2, 2, 2-trifluoroethyl)-1, 3-dihydro-2 H-imidazo [4, 5-c] pyridin-2-one (JNJ-53718678), a Potent and Orally Bioavailable Fusion Inhibitor of Respiratory Syncytial Virus. J Med Chem. 2020;63(15):8046–8058. doi:10.1021/acs.jmedchem.0c00226
  • Xing Y, Proesmans M. New therapies for acute RSV infections: where are we? Eur J Pediatr. 2019;178(2):131–138. doi:10.1007/s00431-018-03310-7
  • Tang W, Li M, Liu Y, et al. Small molecule inhibits respiratory syncytial virus entry and infection by blocking the interaction of the viral fusion protein with the cell membrane. FASEB J. 2019;33(3):4287–4299. doi:10.1096/fj.201800579R
  • Kim YI, Pareek R, Murphy R, et al. The antiviral effects of RSV fusion inhibitor, MDT‐637, on clinical isolates, vs its achievable concentrations in the human respiratory tract and comparison to ribavirin. Influenza Other Respi Viruses. 2017;11(6):525–530. doi:10.1111/irv.12503