120
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Distribution of Biocide Resistance Genes and Association with Clonal Complex Genotypes in Staphylococcus aureus Isolated from School-Age Children in Guangzhou

, , , , , , , , , , & show all
Pages 7165-7175 | Received 25 Aug 2022, Accepted 26 Nov 2022, Published online: 07 Dec 2022

References

  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi:10.1128/CMR.00134-14
  • Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. doi:10.1038/nrdp.2018.33
  • Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997–1999. MMWR Morb Mortal Wkly Rep. 1999;48(32):707–710.
  • David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–687. doi:10.1128/CMR.00081-09
  • Lorton F, Chalumeau M, Martinot A, et al. Epidemiology of community-onset severe bacterial infections in children and its evolution: a population-based study in France. Pediatr Crit Care Med. 2020;21(6):e325–e32. doi:10.1097/PCC.0000000000002300
  • Agyeman PKA, Schlapbach LJ, Giannoni E, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–133. doi:10.1016/S2352-4642(17)30010-X
  • Gorwitz RJ, Kruszon-Moran D, McAllister SK, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis. 2008;197(9):1226–1234. doi:10.1086/533494
  • Wertheim HFL, Melles DC, Vos MC, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–762. doi:10.1016/S1473-3099(05)70295-4
  • Datta F, Erb T, Heininger U, et al. A multicenter, cross-sectional study on the prevalence and risk factors for nasal colonization with Staphylococcus aureus in patients admitted to children’s hospitals in Switzerland. Clin Infect Dis. 2008;47(7):923–926. doi:10.1086/591700
  • Patel JB, Gorwitz RJ, Jernigan JA. Mupirocin resistance. Clin Infect Dis. 2009;49(6):935–941. doi:10.1086/605495
  • Septimus EJ, Schweizer ML. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev. 2016;29(2):201–222. doi:10.1128/CMR.00049-15
  • Loeb MB, Main C, Eady A, Walker-Dilks C. Antimicrobial drugs for treating methicillin-resistant Staphylococcus aureus colonization. Cochrane Database Syst Rev. 2003;2003(4):CD003340.
  • Poovelikunnel T, Gethin G, Humphreys H. Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother. 2015;70(10):2681–2692. doi:10.1093/jac/dkv169
  • Verma R, Verma SK, Rakesh KP, et al. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. Eur J Med Chem. 2021;212:113134. doi:10.1016/j.ejmech.2020.113134
  • Zha G-F, Preetham HD, Rangappa S, et al. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem. 2021;115:105175. doi:10.1016/j.bioorg.2021.105175
  • Qin H-L, Liu J, Fang W-Y, Ravindar L, Rakesh KP. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem. 2020;194:112245. doi:10.1016/j.ejmech.2020.112245
  • Zha G-F, Wang S-M, Rakesh KP, et al. Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem. 2019;162:364–377. doi:10.1016/j.ejmech.2018.11.012
  • McNeil JC, Hulten KG, Kaplan SL, Mason EO. Mupirocin resistance in Staphylococcus aureus causing recurrent skin and soft tissue infections in children. Antimicrob Agents Chemother. 2011;55(5):2431–2433. doi:10.1128/AAC.01587-10
  • Conceição T, de Lencastre H, Aires-de-Sousa M. Prevalence of biocide resistance genes and chlorhexidine and mupirocin non-susceptibility in Portuguese hospitals during a 31-year period (1985–2016). J Glob Antimicrob Resist. 2021;24:169–174. doi:10.1016/j.jgar.2020.12.010
  • Conceição T, Coelho C, de Lencastre H, Aires-de-Sousa M. High prevalence of biocide resistance determinants in staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother. 2016;60(1):678–681. doi:10.1128/AAC.02140-15
  • Liu Q, Zhao H, Han L, Shu W, Wu Q, Ni Y. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis. 2015;82(4):278–283. doi:10.1016/j.diagmicrobio.2015.03.023
  • McCarthy H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1. doi:10.3389/fcimb.2015.00001
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3). doi:10.1128/MMBR.00026-19
  • Günther F, Blessing B, Tacconelli E, Mutters NT. MRSA decolonization failure-are biofilms the missing link? Antimicrob Resist Infect Control. 2017;6:32. doi:10.1186/s13756-017-0192-1
  • Zhang X, Manukumar HM, Rakesh KP, et al. Role of BP*C@AgNPs in Bap-dependent multicellular behavior of clinically important methicillin-resistant Staphylococcus aureus (MRSA) biofilm adherence: a key virulence study. Microb Pathog. 2018;123:275–284. doi:10.1016/j.micpath.2018.07.025
  • Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin H-L. Vision for medicine: staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339–347. doi:10.1016/j.micpath.2018.07.002
  • Sritharadol R, Hamada M, Kimura S, Ishii Y, Srichana T, Tateda K. Mupirocin at subinhibitory concentrations induces biofilm formation in Staphylococcus aureus. Microb Drug Resist. 2018;24(9):1249–1258. doi:10.1089/mdr.2017.0290
  • Park KH, Jung M, Kim DY, et al. Effects of subinhibitory concentrations of chlorhexidine and mupirocin on biofilm formation in clinical meticillin-resistant Staphylococcus aureus. J Hosp Infect. 2020;106(2):295–302. doi:10.1016/j.jhin.2020.07.010
  • Liang B, Liang X, Gao F, et al. Active surveillance, drug resistance, and genotypic profiling of among school-age children in China. Front Med. 2021;8:701494. doi:10.3389/fmed.2021.701494
  • Fritz SA, Hogan PG, Camins BC, et al. Mupirocin and chlorhexidine resistance in Staphylococcus aureus in patients with community-onset skin and soft tissue infections. Antimicrob Agents Chemother. 2013;57(1):559–568. doi:10.1128/AAC.01633-12
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacterial That Grow Aerobically CLSI Standard M07. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Lu Z, Chen Y, Chen W, et al. Characteristics of qacA/B-positive Staphylococcus aureus isolated from patients and a hospital environment in China. J Antimicrob Chemother. 2015;70(3):653–657. doi:10.1093/jac/dku456
  • McDanel JS, Murphy CR, Diekema DJ, et al. Chlorhexidine and mupirocin susceptibilities of methicillin-resistant staphylococcus aureus from colonized nursing home residents. Antimicrob Agents Chemother. 2013;57(1):552–558. doi:10.1128/AAC.01623-12
  • Hogue JS, Buttke P, Braun LE, Fairchok MP. Mupirocin resistance related to increasing mupirocin use in clinical isolates of methicillin-resistant Staphylococcus aureus in a pediatric population. J Clin Microbiol. 2010;48(7):2599–2600. doi:10.1128/JCM.02118-09
  • Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891–899. doi:10.1111/j.1600-0463.2007.apm_630.x
  • Azrad M, Shmuel C, Leshem T, et al. Reduced susceptibility to chlorhexidine among isolates in Israel: phenotypic and genotypic tolerance. Antibiotics. 2021;10(3):342. doi:10.3390/antibiotics10030342
  • Madden GR, Sifri CD. Antimicrobial resistance to agents used for Staphylococcus aureus decolonization: is there a reason for concern. Curr Infect Dis Rep. 2018;20(8):26. doi:10.1007/s11908-018-0630-0
  • Hassanzadeh S, Ganjloo S, Pourmand MR, Mashhadi R, Ghazvini K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microb Pathog. 2020;139:103850. doi:10.1016/j.micpath.2019.103850
  • Sheng W-H, Wang J-T, Lauderdale T-L, Weng C-M, Chen D, Chang S-C. Epidemiology and susceptibilities of methicillin-resistant Staphylococcus aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn Microbiol Infect Dis. 2009;63(3):309–313. doi:10.1016/j.diagmicrobio.2008.11.014
  • Noguchi N, Suwa J, Narui K, et al. Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J Med Microbiol. 2005;54(Pt 6):557–565. doi:10.1099/jmm.0.45902-0
  • McNeil JC, Kok EY, Vallejo JG, et al. Clinical and molecular features of decreased chlorhexidine susceptibility among nosocomial staphylococcus aureus isolates at Texas children’s hospital. Antimicrob Agents Chemother. 2016;60(2):1121–1128. doi:10.1128/AAC.02011-15
  • Mahmoudi S, Mamishi S, Mohammadi M, et al. Phenotypic and genotypic determinants of mupirocin resistance among isolates recovered from clinical samples of children: an Iranian hospital-based study. Infect Drug Resist. 2019;12:137–143. doi:10.2147/IDR.S185610
  • Trouillet-Assant S, Flammier S, Sapin A, et al. Mupirocin resistance in isolates of Staphylococcus spp. from Nasal Swabs in a tertiary hospital in France. J Clin Microbiol. 2015;53(8):2713–2715. doi:10.1128/JCM.00274-15
  • Bjorland J, Steinum T, Kvitle B, Waage S, Sunde M, Heir E. Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. J Clin Microbiol. 2005;43(9):4363–4368. doi:10.1128/JCM.43.9.4363-4368.2005
  • Costa SS, Falcão C, Viveiros M, et al. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011;11:241. doi:10.1186/1471-2180-11-241
  • Opacic D, Lepsanovic Z, Sbutega-Milosevic G. Distribution of disinfectant resistance genes qacA/B in clinical isolates of meticillin-resistant and -susceptible Staphylococcus aureus in one Belgrade hospital. J Hosp Infect. 2010;76(3):266–267. doi:10.1016/j.jhin.2010.04.019
  • Zhang M, O’Donoghue MM, Ito T, Hiramatsu K, Boost MV. Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong. J Hosp Infect. 2011;78(2):113–117. doi:10.1016/j.jhin.2011.02.018
  • Kaatz GW, McAleese F, Seo SM. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother. 2005;49(5):1857–1864. doi:10.1128/AAC.49.5.1857-1864.2005
  • Kernberger-Fischer IA, Krischek C, Strommenger B, et al. Susceptibility of methicillin-resistant and -susceptible Staphylococcus aureus isolates of various clonal lineages from Germany to eight biocides. Appl Environ Microbiol. 2018;84(13). doi:10.1128/AEM.00799-18
  • Batra R, Cooper BS, Whiteley C, Patel AK, Wyncoll D, Edgeworth JD. Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2010;50(2):210–217. doi:10.1086/648717
  • Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–39. doi:10.1016/S0966-842X(00)01913-2
  • Sharabiani HR, Sadeghi J, Pirzade T, et al. Comparison of superantigens and attachment factors genes of Staphylococcus aureus in clinical isolates and nasal colonizers in the same patients. Microb Pathog. 2021;154:104860. doi:10.1016/j.micpath.2021.104860
  • Seah C, Alexander DC, Louie L, et al. MupB, a new high-level mupirocin resistance mechanism in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(4):1916–1920. doi:10.1128/AAC.05325-11
  • Barakat GI, Nabil YM. Correlation of mupirocin resistance with biofilm production in methicillin-resistant Staphylococcus aureus from surgical site infections in a tertiary centre, Egypt. J Glob Antimicrob Resist. 2016;4:16–20. doi:10.1016/j.jgar.2015.11.010