207
Views
0
CrossRef citations to date
0
Altmetric
PERSPECTIVES

Buruli Ulcer and Medical Geo-Microbiology

ORCID Icon, ORCID Icon &
Pages 6811-6814 | Received 30 Aug 2022, Accepted 18 Nov 2022, Published online: 25 Nov 2022

References

  • Billington WR. Albert Cook 1870–1951: Uganda pioneer. Br Med J. 1970;4(5737):738–740. doi:10.1136/bmj.4.5737.738
  • Johnson PDR. Buruli ulcer: cured by 8 weeks of oral antibiotics? Lancet. 2020;395(10232):1231–1232. doi:10.1016/S0140-6736(20)30478-5
  • Omansen TF, Erbowor-Becksen A, Yotsu R, et al. Global epidemiology of Buruli ulcer, 2010–2017, and analysis of 2014 WHO programmatic targets. Emerg Infect Dis. 2019;25:2183–2190. doi:10.3201/eid2512.190427
  • Röltgen K, Pluschke G. Buruli ulcer: history and disease burden. In: Pluschke G, Röltgen K, editors. Buruli Ulcer: Mycobacterium Ulcerans Disease. Cham (CH): Springer; 2019:72.
  • Tai AYC, Athan E, Friedman ND, Hughes A, Walton A, O’Brien DP. Increased severity and spread of Mycobacterium ulcerans, Southeastern Australia. Emerg Infect Dis. 2018;24(1):58. doi:10.3201/eid2401.171070
  • Weir E. Buruli ulcer: the third most common mycobacterial infection. Can Med Assoc J. 2002;166(13):1691.
  • World Health Organization. Buruli ulcer (Mycobacterium ulcerans) - Fact sheet, Available from: https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection). Accessed November 21, 2022.
  • Merritt RW, Walker ED, Small PL, et al. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis. 2010;4(12):e911. doi:10.1371/journal.pntd.0000911
  • Bieri R, Scherr N, Ruf M-T, et al. The macrolide toxin mycolactone promotes bim-dependent apoptosis in Buruli ulcer through inhibition of mTOR. ACS Chem Biol. 2017;12:1297–1307. doi:10.1021/acschembio.7b00053
  • Prévot G, Bourreau E, Pascalis H, et al. Differential production of systemic and intralesional gamma interferon and interleukin-10 in nodular and ulcerative forms of Buruli disease. Infect Immun. 2004;72(2):958–965. doi:10.1128/IAI.72.2.958-965.2004
  • Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244–269. doi:10.1128/CMR.14.2.244-269.2001
  • Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229. doi:10.1177/0022034509359125
  • Percival S, Cutting K. Microbiology of Wounds. 1st ed. CRC Press; 2010:105. doi:10.1201/9781420079944
  • Pluschke G, Röltgen K. Buruli Ulcer: Mycobacterium Ulcerans Disease, 5. Diagnosis and Treatment of BU in Different Geographical Settings. Cham (CH): Springer; 2019.
  • Williams LB, Haydel SE. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int Geol Rev. 2010;52(7/8):745–770. doi:10.1080/00206811003679737
  • Williams L. Geomimicry: harnessing the antibacterial action of clays. Clay Miner. 2017;52(1):1–24. doi:10.1180/claymin.2017.052.1.01
  • Haydel SE, Remenih CM, Williams LB. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother. 2008;61(2):353–361. doi:10.1093/jac/dkm468
  • Williams LB, Haydel SE, Giese RF, Eberl DD. Chemical and mineralogical characteristics of French green clays used for healing. Clays Clay Miner. 2008;56(4):437–452. doi:10.1346/CCMN.2008.0560405
  • Williams LB, Schmidt-Malan SM, Patel R. Preliminary evaluation of natural antibacterial clays for treating wound infections. Clays Clay Miner. 2021;69:589–602. doi:10.1007/s42860-021-00164-3
  • Williams LB. Antibacterial clays: scientific investigation of their practical applications in medicine. Chapter 20. In: Finkelman R, Seigel M, Selinus O, editors. Practical Applications of Medical Geology. Springer; 2021:671–696.
  • Williams LB. Natural antibacterial clays: historical uses and modern advances. Clays Clay Miner. 2019;67:7–24. doi:10.1007/s42860-018-0002-8
  • Cohn CA, Mueller S, Wimmer E, et al. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans. 2006;7:3. doi:10.1186/1467-4866-7-3
  • Schoonen MAA, Cohn CA, Roemer E, Laffers R, Simon SR, O’Riordan T. Mineral-induced formation of reactive oxygen species. Rev Mineral Geochem. 2006;64:179–221. doi:10.2138/rmg.2006.64.7
  • Morrison K, Misra R, Williams L. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Sci Rep. 2016;6:19043. doi:10.1038/srep19043
  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–384. doi:10.1038/nrmicro3028
  • Sandri G, Bonferoni MC, Ferrari F, et al. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym. 2014;102:970–977. doi:10.1016/j.carbpol.2013.10.029
  • Ouvry PA. Essai de la sulfadiazine argentique dans le traitement local de l’ulcère veineux [A trial of silver sulfadiazine in the local treatment of venous ulcer]. Phlebologie. 1989;42(4):673–679.
  • Di Domenico EG, De Angelis B, Cavallo I, et al. Silver sulfadiazine eradicates antibiotic-tolerant Staphylococcus aureus and Pseudomonas aeruginosa biofilms in patients with infected diabetic foot ulcers. J Clin Med. 2020;9(12):3807. doi:10.3390/jcm9123807
  • Nwabudike LC, Tatu AL. Magistral prescription with silver nitrate and Peru balsam in difficult-to-heal diabetic foot ulcers. Am J Ther. 2018;25(6):e679–e680. doi:10.1097/MJT.0000000000000622