210
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Genetic Diversity, Antibiotic Resistance, and Virulence Gene Features of Methicillin-Resistant Staphylococcus aureus Epidemics in Guiyang, Southwest China

, , , , , , & show all
Pages 7189-7206 | Received 06 Oct 2022, Accepted 25 Nov 2022, Published online: 07 Dec 2022

References

  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12:547–569. doi:10.1080/21505594.2021.1878688
  • Siddiqui AH, Koirala J. Methicillin Resistant Staphylococcus Aureus. Treasure Island (FL): StatPearls; 2022.
  • Palavecino EL. Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Methods Mol Biol. 2020;2069:1–28.
  • Jin Y, Zhou W, Yin Z, et al. The genetic feature and virulence determinant of highly virulent community-associated MRSA ST338-SCCmec Vb in China. Emerg Microbes Infect. 2021;10:1052–1064. doi:10.1080/22221751.2021.1914516
  • Mousavi SF, Mirzaei B, Shaghaghi B, et al. Phenotypic and genotypic features of first biofilm forming nasopharyngeal colonized Streptococcus pneumoniae isolates. Iran J Microbiol. 2017;9:200–207.
  • Lu L, Hu W, Tian Z, et al. Developing natural products as potential anti-biofilm agents. Chin Med. 2019;14:11. doi:10.1186/s13020-019-0232-2
  • Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;2020:84.
  • Wang C, Wei PW, Song CR, et al. Evaluation of the antimicrobial function of Ginkgo biloba exocarp extract against clinical bacteria and its effect on Staphylococcus haemolyticus by disrupting biofilms. J Ethnopharmacol. 2022;298:115602. doi:10.1016/j.jep.2022.115602
  • Wang B, Wei PW, Yao Y, et al. Functional and expression characteristics identification of Phormicins, novel AMPs from Musca domestica with anti-MRSA biofilm activity, in response to different stimuli. Int J Biol Macromol. 2022;209:299–314. doi:10.1016/j.ijbiomac.2022.03.204
  • Wang B, Song CR, Zhang QY, et al. The fusaric acid derivative qy17 inhibits Staphylococcus haemolyticus by disrupting biofilm formation and the stress response via altered gene expression. Front Microbiol. 2022;13:822148. doi:10.3389/fmicb.2022.822148
  • Peng-Wei W, Chao-Rong S, Xu W, et al. A potential milk preservative----Phormicin C-NS, sorbic acid-modified housefly antimicrobial peptide, inhibits Candida albicans hypha and biofilm formation. Lwt. 2022;168:113883. doi:10.1016/j.lwt.2022.113883
  • Wang B, Yao Y, Wei P, et al. Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo. Int J Biol Macromol. 2021;167:1424–1434. doi:10.1016/j.ijbiomac.2020.11.096
  • Wang B, Wei PW, Wan S, et al. Ginkgo biloba exocarp extracts inhibit S. aureus and MRSA by disrupting biofilms and affecting gene expression. J Ethnopharmacol. 2021;271:113895. doi:10.1016/j.jep.2021.113895
  • Naimi HM, Rasekh H, Noori AZ, et al. Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan. BMC Infect Dis. 2017;17:737. doi:10.1186/s12879-017-2844-4
  • Shahmoradi M, Faridifar P, Shapouri R, et al. Determining the biofilm forming gene profile of Staphylococcus aureus clinical isolates via multiplex colony PCR method. Rep Biochem Mol Biol. 2019;7:181–188.
  • Mirzaei B, Moosavi SF, Babaei R, et al. Purification and evaluation of Polysaccharide Intercellular Adhesion (PIA) antigen from Staphylococcus epidermidis. Curr Microbiol. 2016;73:611–617. doi:10.1007/s00284-016-1098-5
  • Mirzaei B, Babaei R, Valinejad S. Staphylococcal vaccine antigens related to biofilm formation. Hum Vaccin Immunother. 2021;17:293–303. doi:10.1080/21645515.2020.1767449
  • Mirzaei B, Babaei R, Zeighami H, et al. Staphylococcus aureus putative vaccines based on the virulence factors: a mini-review. Front Microbiol. 2021;12:704247. doi:10.3389/fmicb.2021.704247
  • Mirzaei B, Mousavi SF, Babaei R, et al. Synthesis of conjugated PIA-rSesC and immunological evaluation against biofilm-forming Staphylococcus epidermidis. J Med Microbiol. 2019;68:791–802. doi:10.1099/jmm.0.000910
  • O’Hara FP, Suaya JA, Ray GT, et al. spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb Drug Resist. 2016;22:88–96. doi:10.1089/mdr.2014.0238
  • Bai X, Wang H, Xin Y, et al. Prevalence and characteristics of Shiga toxin-producing Escherichia coli isolated from retail raw meats in China. Int J Food Microbiol. 2015;200:31–38. doi:10.1016/j.ijfoodmicro.2015.01.018
  • Chao G, Bao G, Cao Y, et al. Prevalence and diversity of enterotoxin genes with genetic background of Staphylococcus aureus isolates from different origins in China. Int J Food Microbiol. 2015;211:142–147. doi:10.1016/j.ijfoodmicro.2015.07.018
  • Chizimu JY, Solo ES, Bwalya P, et al. Genetic diversity and transmission of multidrug-resistant Mycobacterium tuberculosis strains in Lusaka, Zambia. Int J Infect Dis. 2022;114:142–150. doi:10.1016/j.ijid.2021.10.044
  • Bhowmik D, Das BJ, Pandey P, et al. An array of multiplex PCR assays for detection of Staphylococcal chromosomal cassette mec (SCCmec) types among staphylococcal isolates. J Microbiol Methods. 2019;166:105733. doi:10.1016/j.mimet.2019.105733
  • Urushibara N, Aung MS, Kawaguchiya M, et al. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother. 2020;75:46–50. doi:10.1093/jac/dkz406
  • Becker K, Sunderkotter C. Hautinfektionen durch MRSA Epidemiologie und Klinik [Skin infections with MRSA. Epidemiology and clinical features]. Hautarzt. 2012;63:371–380. German. doi:10.1007/s00105-011-2255-1
  • Hidron AI, Low CE, Honig EG, et al. Emergence of community-acquired meticillin-resistant Staphylococcus aureus strain USA300 as a cause of necrotising community-onset pneumonia. Lancet Infect Dis. 2009;9:384–392. doi:10.1016/S1473-3099(09)70133-1
  • Tam K, Torres VJ, Fischetti VA. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr. 2019;7. doi:10.1128/microbiolspec.GPP3-0039-2018
  • Zhao H, Xu S, Yang H, et al. Molecular typing and variations in amount of tst gene expression of TSST-1-producing clinical Staphylococcus aureus isolates. Front Microbiol. 2019;10:1388. doi:10.3389/fmicb.2019.01388
  • Lakhundi S, Zhang K. Clinical, epidemiologic, and Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31. doi:10.1128/CMR.00020-18
  • Enright MC, Day NP, Davies CE, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–1015. doi:10.1128/JCM.38.3.1008-1015.2000
  • Koreen L, Ramaswamy SV, Graviss EA, et al. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol. 2004;42:792–799. doi:10.1128/JCM.42.2.792-799.2004
  • Boye K, Bartels MD, Andersen IS, et al. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect. 2007;13:725–727. doi:10.1111/j.1469-0691.2007.01720.x
  • Zhang K, McClure JA, Conly JM. Enhanced multiplex PCR assay for typing of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Mol Cell Probes. 2012;26:218–221. doi:10.1016/j.mcp.2012.04.002
  • Yan XM, Wang J, Tao XX, et al. A conjugative MDR pMG1-like plasmid carrying the lsa(E) gene of enterococcus faecium with potential transmission to Staphylococcus aureus. Front Microbiol. 2021;12:667415. doi:10.3389/fmicb.2021.667415
  • Madera S, McNeil N, Serpa PH, et al. Prolonged silent carriage, genomic virulence potential and transmission between staff and patients characterize a neonatal intensive care unit (NICU) outbreak of methicillin-resistant Staphylococcus aureus (MRSA). Infect Control Hosp Epidemiol. 2022;1–7. doi:10.1017/ice.2022.48
  • Yoshimura J, Yamakawa K, Umemura Y, et al. Impact of beta-lactamase detection reagent on rapid diagnosis of ESBL-producing pathogens using urine samples of patients with Gram-negative bacteriuria. Int J Infect Dis. 2021;113:18–22. doi:10.1016/j.ijid.2021.09.059
  • Algammal AM, Enany ME, El-Tarabili RM, et al. Prevalence, antimicrobial resistance profiles, virulence and enterotoxins-determinant genes of MRSA isolated from subclinical bovine mastitis in Egypt. Pathogens. 2020;9:362. doi:10.3390/pathogens9050362
  • Song JH, Hsueh PR, Chung DR, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother. 2011;66:1061–1069. doi:10.1093/jac/dkr024
  • Challagundla L, Luo X, Tickler IA, et al. Range expansion and the origin of USA300 North American epidemic methicillin-resistant Staphylococcus aureus. mBio. 2018;9. doi:10.1128/mBio.02016-17
  • Hsu LY, Harris SR, Chlebowicz MA, et al. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol. 2015;16:81. doi:10.1186/s13059-015-0643-z
  • Nimmo GR, Coombs GW. Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. Int J Antimicrob Agents. 2008;31:401–410. doi:10.1016/j.ijantimicag.2007.08.011
  • Mun YS, Hwang YJ. Novel spa and multi-locus sequence types (MLST) of Staphylococcus Aureus samples isolated from clinical specimens in Korean. Antibiotics. 2019;8:202. doi:10.3390/antibiotics8040202
  • Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–641. doi:10.1038/nrmicro2200
  • Zhu P, Jiang Y, Wang Y. Molecular typing and drug resistance of methicillin-resistant Staphylococcus aureus in Zhejiang province. 2014.
  • Fu Y, Xiong M, Li X, et al. Molecular characteristics, antimicrobial resistance and virulence gene profiles of Staphylococcus aureus isolates from Wuhan, Central China. Infect Drug Resist. 2020;13:2063–2072. doi:10.2147/IDR.S249988
  • Guo Y, Wang B, Rao L, et al. Molecular characteristics of rifampin-sensitive and -resistant isolates and characteristics of rpoB gene mutations in methicillin-resistant Staphylococcus aureus. Infect Drug Resist. 2021;14:4591–4600. doi:10.2147/IDR.S336200
  • Wang W, Liu F, Baloch Z, et al. Genotypic characterization of methicillin-resistant Staphylococcus aureus isolated from pigs and retail foods in China. Biomed Environ Sci. 2017;30:570–580. doi:10.3967/bes2017.076
  • Pulingam T, Parumasivam T, Gazzali AM, et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022;170:106103. doi:10.1016/j.ejps.2021.106103
  • Sinsinwar S, Jayaraman A, Mahapatra SK, et al. Anti-virulence properties of catechin-in-cyclodextrin-in-phospholipid liposome through down-regulation of gene expression in MRSA strains. Microb Pathog. 2022;167:105585. doi:10.1016/j.micpath.2022.105585
  • Jing S, Ren X, Wang L, et al. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence. 2022;13:578–588. doi:10.1080/21505594.2022.2051313
  • Lavecchia A, Chiara M, De Virgilio C, et al. Staphylococcus arlettae genomics: novel insights on candidate antibiotic resistance and virulence genes in an emerging opportunistic pathogen. Microorganisms. 2019;7:580. doi:10.3390/microorganisms7110580
  • Wu S, Huang J, Zhang F, et al. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China. Front Microbiol. 2019;10:304. doi:10.3389/fmicb.2019.00304
  • Boswihi SS, Udo EE, Monecke S, et al. Emerging variants of methicillin-resistant Staphylococcus aureus genotypes in Kuwait hospitals. PLoS One. 2018;13:e0195933. doi:10.1371/journal.pone.0195933
  • Yuan W, Liu J, Zhan Y, et al. Molecular typing revealed the emergence of pvl-positive sequence type 22 methicillin-susceptible Staphylococcus aureus in Urumqi, Northwestern China. Infect Drug Resist. 2019;12:1719–1728. doi:10.2147/IDR.S202906
  • Bae JS, Da F, Liu R, et al. Contribution of staphylococcal enterotoxin B to Staphylococcus aureus systemic infection. J Infect Dis. 2021;223:1766–1775. doi:10.1093/infdis/jiaa584
  • Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43(10):5026–33. doi: 10.1128/JCM.43.10.5026-5033.2005
  • Zhang K, McClure JA, Conly JM. Corrigendum to “Enhanced multiplex PCR assay for the typing of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus”. Mol Cell Probes. 2019;45:68. doi: 10.1016/j.mcp.2019.03.004
  • Alli OA, Ogbolu DO, Shittu AO, Okorie AN, Akinola JO, Daniel JB. Association of virulence genes with mecA gene in Staphylococcus aureus isolates from Tertiary Hospitals in Nigeria. Indian J Pathol Microbiol. 2015;58(4):464–71. doi: 10.4103/0377-4929.168875
  • Li X, Fang F, Zhao J, Lou N, Li C, Huang T, Li Y. Molecular characteristics and virulence gene profiles of Staphylococcus aureus causing bloodstream infection. Braz J Infect Dis. 2018;22(6):487–494. doi: 10.1016/j.bjid.2018.12.001
  • Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for simultaneous identification of community-associated methicillin-resistant Staphylococcus aureus strains USA300 and USA400 and detection of mecA and Panton-Valentine leukocidin genes, with discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2008;46(3):1118–22. doi: 10.1128/JCM.01309-07
  • Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA. 1998;279(19):1537–41. doi: 10.1001/jama.279.19.1537
  • Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M. Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BMC Infect Dis. 2018;18(1):560. doi: 10.1186/s12879-018-3457-2