85
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Method for Detecting Five Carbapenemases in Bacteria Based on CRISPR-Cas12a Multiple RPA Rapid Detection Technology

, , , , , ORCID Icon, & show all
Pages 1599-1614 | Received 06 Sep 2023, Accepted 19 Dec 2023, Published online: 24 Apr 2024

References

  • Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–1798. doi:10.3201/eid1710.110655
  • Jean S-S, Lee W-S, Lam C, et al. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015;10(3):407–425. doi:10.2217/fmb.14.135
  • Íñigo M, Del Pozo JL, Lopera-Mármol C, Aiello TF, Puerta-Alcalde P, Garcia-Vidal C. Treatment of infections caused by carbapenemase-producing Enterobacterales. Rev Esp Quimioter. 2022;35(3):46–50. doi:10.37201/req/s03.11.2022
  • Miller S, Humphries RM. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae. Expert Rev Anti Infect Ther. 2016;14(8):705–717. doi:10.1080/14787210.2016.1206815
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–123. doi:10.1016/j.diagmicrobio.2010.12.002
  • Osei Sekyere J, Govinden U, Essack SY. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J Appl Microbiol. 2015;119(5):1219–1233. doi:10.1111/jam.12918
  • Probst K, Sébastien B, Michael B. Fast and automated detection of common carbapenemase genes using multiplex real-time PCR on the BD MAX™system. J Microbiol Methods. 2021;6(185):106–224.
  • Georgoutsou-Spyridonos M, Filippidou M, Kaprou GD, et al. Isothermal recombinase polymerase amplification (RPA) of E. coli gDNA in commercially fabricated PCB-based microfluidic platforms. Micromachines. 2021;12(11):1387. doi:10.3390/mi12111387
  • Bodulev OL, Sakharov IY. Isothermal nucleic acid amplification techniques and their use in bioanalysis. Biochemistry. 2020;85(2):147–166. doi:10.1134/S0006297920020030
  • Hanna RE, Doench JG. Design and analysis of CRISPR-Cas experiments. Nat Biotechnol. 2020;38(7):813–823. doi:10.1038/s41587-020-0490-7
  • Bandyopadhyay A, Kancharla N, Javalkote VS, et al. CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement. Front Plant Sci. 2020;11(2):584–594. doi:10.3389/fpls.2020.584151
  • Mao Z, Chen R, Wang X. CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety. Trends Food Sci Technol. 2022;12(4):211–222. doi:10.1016/j.tifs.2022.02.030
  • Ju Park B, Seong Park M, Myun Lee J, et al. Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay. Biosensors. 2021;11(3):88. doi:10.3390/bios11030088
  • Lepelletier D, Batard E, Berthelot P, et al. Carbapenemase-producing enterobacteriae: epidemiology, strategies to control their spread and issues. Rev Med Interne. 2015;36(7):474–489. doi:10.1016/j.revmed.2014.12.006
  • Aníbal Reyes J, Melano R, Andrés Cárdenas P, et al. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz J Infect Dis. 2020;24(3):231–238. doi:10.1016/j.bjid.2020.03.002
  • Yan Y-Z, Sun K-D, Pan L-H, et al. A screening strategy for phenotypic detection of carbapenemase in the clinical laboratory. Can J Microbiol. 2014;60(4):211–215. doi:10.1139/cjm-2013-0692
  • Lee H, Lim Kim J, Da HJ, et al. Evaluation of Disk carbapenemase test using improved disks for rapid detection and differentiation of clinical isolates of carbapenemase-producing Enterobacterales. J Infect Chemother. 2021;27(8):1205–1211. doi:10.1016/j.jiac.2021.03.020
  • Tängdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5):501–512. doi:10.1111/joim.12342
  • Huaming X, Tang H, Rongrong L, et al. A New Method Based on LAMP-CRISPR-Cas12a-Lateral Flow Immunochromatographic Strip for Detection. Infect Drug Resist. 2022;27(15):685–696.
  • Liu R, He Y, Lan T, Zhang J. Installing CRISPR-Cas12a sensors in a portable glucose meter for point-of-care detection of analytes. Analyst. 2021;146(10):3114–3120. doi:10.1039/D1AN00008J
  • Ding R, Long J, Yuan M, et al. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV. Int J Mol Sci. 2021;22(9):4842. doi:10.3390/ijms22094842
  • Jirawannaporn S, Limothai U, Tachaboon S, et al. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32. PLoS Negl Trop Dis. 2022;16(1):e0010112. doi:10.1371/journal.pntd.0010112
  • Yanan L, Shi Z, Hu A. Rapid One-Tube RPA-CRISPR/Cas12 detection platform for methicillin-resistant staphylococcus aureus. Diagnostics. 2022;12(4):829. doi:10.3390/diagnostics12040829
  • Feina L, Xiao J, Yang H, et al. Development of a Rapid and Efficient RPA-CRISPR/Cas12a assay for mycoplasma pneumoniae detection. Front Microbiol. 2022;15(130):806.
  • Luo M, Pan Y, Yaqing H, et al. Detecting SARS-CoV-2 BA.2, BA.4, and BA.5 variants utilizing a robust RT-RPA-CRISPR/Cas12a-Based Method - China, 2023. China CDC Wkly. 2023;5(26):584–591. doi:10.46234/ccdcw2023.113
  • Gong L, Wang X, Li Z. Integrated trinity test with RPA-CRISPR/Cas12a-fluorescence for real-time detection of respiratory syncytial virus A or B. Front Microbiol. 2022;13:819931. doi:10.3389/fmicb.2022.819931
  • Lei R, Limei L, Pinshan W, et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of toxoplasma gondii in the environment. ACS Synth Biol. 2022;11(5):1772–1781. doi:10.1021/acssynbio.1c00620