71
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical and Molecular Characteristics of Patients with Bloodstream Infections Caused by KPC and NDM Co-Producing Carbapenem-Resistant Klebsiella pneumoniae

, , , , , , , ORCID Icon & show all
Pages 1685-1697 | Received 15 Dec 2023, Accepted 22 Apr 2024, Published online: 01 May 2024

References

  • Wang M, Earley M, Chen L, et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect Dis. 2022;22(3):401–412. doi:10.1016/S1473-3099(21)00399-6
  • Wu Y, Wu C, Bao D, et al. Global evolution and geographic diversity of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Lancet Infect Dis. 2022;22(6):761–762. doi:10.1016/S1473-3099(22)00275-4
  • Gao H, Liu Y, Wang R, Wang Q, Jin L, Wang H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine. 2020;51:102599. doi:10.1016/j.ebiom.2019.102599
  • Rong F, Liu Z, Yang P, et al. Epidemiological and Molecular Characteristics of bla (NDM-1) and bla (KPC-2) Co-Occurrence Carbapenem-Resistant Klebsiella pneumoniae. Infect Drug Resist. 2023;16:2247–2258. doi:10.2147/IDR.S400138
  • Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023. doi:10.1093/cid/ciad428
  • Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-β-Lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32(2):e00115–00118. doi:10.1128/CMR.00115-18
  • Jiang T, Li G, Huang L, Ding D, Ruan Z, Yan J. Genomic and phylogenetic analysis of a multidrug-resistant bla(NDM)-carrying Klebsiella michiganensis in China. Infect Drug Resist. 2023;16:3109–3116. doi:10.2147/IDR.S409544
  • Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-beta-lactamase inhibitors: an unattended global threat. Lancet Infect Dis. 2022;22(1):e28–e34. doi:10.1016/S1473-3099(20)30868-9
  • Lou T, Du X, Zhang P, et al. Risk factors for infection and mortality caused by carbapenem-resistant Klebsiella pneumoniae: a large multicentre case-control and cohort study. J Infect. 2022;84(5):637–647. doi:10.1016/j.jinf.2022.03.010
  • Falcone M, Tiseo G, Carbonara S, et al. Mortality attributable to bloodstream infections caused by different carbapenem-resistant gram-negative bacilli: results from a nationwide study in Italy (ALARICO Network). Clin Infect Dis. 2023;76(12):2059–2069. doi:10.1093/cid/ciad100
  • Li J, Ren J, Wang W, et al. Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. Eur J Clin Microbiol Infect Dis. 2018;37(4):679–689. doi:10.1007/s10096-017-3160-z
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Jenkins S, Ledeboer NA, Westblade LF, et al. Evaluation of NG-Test Carba 5 for rapid phenotypic detection and differentiation of five common carbapenemase families: results of a multicenter clinical evaluation. J Clin Microbiol. 2020;58(7):e00344–00320. doi:10.1128/JCM.00344-20
  • Han R, Guo Y, Peng M, et al. Evaluation of the Immunochromatographic NG-Test Carba 5, RESIST-5 O.O.K.N.V. and IMP K-SeT for Rapid Detection of KPC-, NDM-, IMP-, VIM-type, and OXA-48-like Carbapenemase Among Enterobacterales. Front Microbiol. 2020;11:609856. doi:10.3389/fmicb.2020.609856
  • Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188. doi:10.1038/s41467-021-24448-3
  • Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–3500. doi:10.1093/jac/dkaa345
  • Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525. doi:10.1093/nar/gkz935
  • Chi X, Meng X, Xiong L, et al. Small wards in the ICU: a favorable measure for controlling the transmission of carbapenem-resistant Klebsiella pneumoniae. Intensive Care Med. 2022;48(11):1573–1581. doi:10.1007/s00134-022-06881-0
  • Wang N, Zhan M, Liu J, et al. Prevalence of Carbapenem-Resistant Klebsiella pneumoniae Infection in a Northern Province in China: Clinical characteristics, drug resistance, and geographic distribution. Infect Drug Resist. 2022;15:569–579. doi:10.2147/IDR.S347343
  • Wu W, Jiang Y, Zhou W, Kuang L. Genomic characteristics of Carbapenem-Resistant Klebsiella pneumoniae isolated from neonatal patients in Southwest China during 2017–2021. Infect Drug Resist. 2023;16:6725–6733. doi:10.2147/IDR.S426565
  • Barnsteiner S, Baty F, Albrich WC, et al. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. Euro Surveill. 2021;26(46):2001537. doi:10.2807/1560-7917.ES.2021.26.46.2001537
  • Roach DJ, Sridhar S, Oliver E, et al. Clinical and genomic characterization of a cohort of patients with Klebsiella pneumoniae bloodstream infection. Clin Infect Dis. 2023;5379—5385.
  • Wu Y, Jiang T, He X, et al. Global phylogeography and genomic epidemiology of Carbapenem-Resistant bla(OXA-232)-carrying Klebsiella pneumoniae sequence type 15 lineage. Emerg Infect Dis. 2023;29(11):2246–2256. doi:10.3201/eid2911.230463
  • Ham DC, Mahon G, Bhaurla SK, et al. Gram-negative bacteria harboring multiple carbapenemase genes, United States, 2012–2019. Emerg Infect Dis. 2021;27(9):2475–2479. doi:10.3201/eid2709.210456
  • Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol. 2023;31(7):735–748. doi:10.1016/j.tim.2023.01.013
  • Zhou K, Xue CX, Xu T, et al. A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China. Nat Commun. 2023;14(1):2464. doi:10.1038/s41467-023-38061-z
  • Sader HS, Mendes RE, Carvalhaes CG, Kimbrough JH, Castanheira M. Changing Epidemiology of carbapenemases among carbapenem-resistant enterobacterales from United States Hospitals and the Activity of Aztreonam-Avibactam Against contemporary Enterobacterales (2019–2021). Open Forum Infect Dis. 2023;10(2):ofad046. doi:10.1093/ofid/ofad046
  • Tryfinopoulou K, Linkevicius M, Pappa O, et al. Emergence and persistent spread of carbapenemase-producing Klebsiella pneumoniae high-risk clones in Greek hospitals, 2013 to 2022. Euro Surveill. 2023;28(47):2300571. doi:10.2807/1560-7917.ES.2023.28.47.2300571
  • Huang J, Zhang S, Zhao Z, Chen M, Cao Y, Li B. Acquisition of a stable and transferable blaNDM-5-positive plasmid with low fitness cost leading to Ceftazidime/Avibactam Resistance in KPC-2-Producing Klebsiella pneumoniae during treatment. Front Cell Infect Microbiol. 2021;11:658070. doi:10.3389/fcimb.2021.658070
  • Saavedra SY, Bernal JF, Montilla-Escudero E, et al. Complexity of genomic epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolates in Colombia urges the reinforcement of whole genome sequencing-based surveillance programs. Clin Infect Dis. 2021;73(Suppl_4):S290–S299. doi:10.1093/cid/ciab777
  • Zhu J, Ju Y, Zhou X, Chen T, Zhuge X, Dai J. Epidemiological characteristics of SHV, cmlv, and FosA6-producing carbapenem-resistant Klebsiella pneumoniae based on whole genome sequences in Jiangsu, China. Front Microbiol. 2023;14:1219733. doi:10.3389/fmicb.2023.1219733
  • Liu Y, Long D, Xiang TX, et al. Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86. J Antimicrob Chemother. 2019;74(5):1233–1240. doi:10.1093/jac/dkz023
  • Huang J, Yi M, Yuan Y, et al. Emergence of a Fatal ST11-KL64 Tigecycline-Resistant Hypervirulent Klebsiella pneumoniae Clone Cocarrying blaNDM and blaKPC in Plasmids. Microbiol Spectr. 2022;10(6):e0253922. doi:10.1128/spectrum.02539-22
  • Tang M, Li J, Liu Z, et al. Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring blaNDM-1 and blaKPC-2 in a tertiary hospital in China. BMC Microbiol. 2023;23(1):64. doi:10.1186/s12866-023-02808-x
  • Liu C, Du P, Yang P, et al. Emergence and inter- and intrahost evolution of pandrug-resistant Klebsiella pneumoniae Coharboring tmexCD1-toprJ1, blaNDM-1, and blaKPC-2. Microbiol Spectr. 2023;11(2):e02786—22.
  • Wang H, Tian F, Wang X, Zhao M, Gao R, Cui X. Analysis of risk factors for carbapenem resistant Klebsiella pneumoniae infection and construction of nomogram model: A large case-control and Cohort study from Shanxi, China. Infect Drug Resist. 2023;16:7351–7363. doi:10.2147/IDR.S442909
  • Huang W, Qiao F, Deng Y, et al. Analysis of risk factors associated with healthcare-associated carbapenem-resistant Klebsiella pneumoniae infection in a large general hospital: a case-case-control study. Eur J Clin Microbiol Infect Dis. 2023;42(5):529–541. doi:10.1007/s10096-023-04578-w
  • Ramos-Castañeda JA, Ruano-Ravina A, Barbosa-Lorenzo R, et al. Mortality due to KPC carbapenemase-producing Klebsiella pneumoniae infections: Systematic review and meta-analysis: Mortality due to KPC Klebsiella pneumoniae infections. J Infect. 2018;76(5):438–448. doi:10.1016/j.jinf.2018.02.007
  • Falcone M, Bassetti M, Tiseo G, et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit Care. 2020;24(1):29. doi:10.1186/s13054-020-2742-9
  • Papadimitriou-Olivgeris M, Bartzavali C, Nikolopoulou A, et al. Impact of Tigecycline’s MIC in the outcome of critically Ill Patients with Carbapenemase-Producing Klebsiella pneumoniae Bacteraemia Treated with Tigecycline Monotherapy-Validation of 2019’s EUCAST Proposed Breakpoint Changes. Antibiotics. 2020;9(11):828. doi:10.3390/antibiotics9110828
  • van Duin D, Lok JJ, Earley M, et al. Colistin Versus Ceftazidime-Avibactam in the treatment of infections due to Carbapenem-Resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(2):163–171. doi:10.1093/cid/cix783
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020;70(9):1799–1808. doi:10.1093/cid/ciz530
  • La Villa S D, Sánchez-Carrillo C, Sánchez-Martínez C, et al. Clinical impact of time to results from the microbiology laboratory in bloodstream infections caused by carbapenemase-producing Enterobacterales (TIME-CPE STUDY). J Antimicrob Chemother. 2023;78(8):1948–1954. doi:10.1093/jac/dkad188
  • Gupta N, Boodman C, Prayag P, Manesh A, Kumar TP. Ceftazidime-avibactam and aztreonam combination for Carbapenem-resistant Enterobacterales bloodstream infections with presumed Metallo-β-lactamase production: a systematic review and meta-analysis. Expert Rev Anti Infect Ther. 2024;1–7.
  • Timsit JF, Paul M, Shields RK, et al. Cefiderocol for the treatment of infections due to Metallo-B-lactamase-Producing Pathogens in the CREDIBLE-CR and APEKS-NP Phase 3 randomized studies. Clin Infect Dis. 2022;75(6):1081–1084. doi:10.1093/cid/ciac078