75
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Carbapenem Resistance in Animal-Environment-Food from Africa: A Systematic Review, Recommendations and Perspectives

ORCID Icon &
Pages 1699-1728 | Received 06 Jan 2024, Accepted 25 Apr 2024, Published online: 03 May 2024

References

  • McKenna M. Antibiotic resistance: the last resort. Nature. 2013;499(7459):394–396. doi:10.1038/499394a
  • Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21. doi:10.1177/2049936115621709
  • Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55(11):4943–4960. doi:10.1128/AAC.00296-11
  • Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-Resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2016;30(1):1–22. doi:10.1128/cmr.00042-16
  • Lee YL, Ko WC, Hsueh PR. Geographic patterns of Acinetobacter baumannii and carbapenem resistance in the Asia-Pacific Region: results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012-2019. Inter J Infect Dis. 2023;127:48–55. doi:10.1016/j.ijid.2022.12.010
  • David S, Reuter S, Harris SR, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4(11):1919–1929. doi:10.1038/s41564-019-0492-8
  • Gomes MZR, de Lima EM, Martins Aires CA, et al. Outbreak report of polymyxin-carbapenem-resistant Klebsiella pneumoniae causing untreatable infections evidenced by synergy tests and bacterial genomes. Sci Rep. 2023;13(1):6238. doi:10.1038/s41598-023-31901-4
  • Magobo RE, Ismail H, Lowe M, et al. Outbreak of NDM-1– and OXA-181–Producing Klebsiella pneumoniae Bloodstream Infections in a Neonatal Unit, South Africa. Em Infectious Dis J. 2010:58. doi:10.3201/eid2908.230484
  • Han YL, Wen XH, Zhao W, et al. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. 2022;13. doi:10.3389/fmicb.2022.1003783
  • Huang N, Jia H, Zhou B, et al. Hypervirulent carbapenem-resistant Klebsiella pneumoniae causing highly fatal meningitis in southeastern China. Front Public Health. 2022:10. doi:10.3389/fpubh.2022.991306
  • Zhang Y, Zeng J, Liu W, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect. 2015;71(5):553–560. doi:10.1016/j.jinf.2015.07.010
  • World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed; 2017. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed February 10, 2023.
  • Dossouvi K, Bakpatina-Batako K. Carbapenem resistance in West Africa: a systematic review. Microbiol Indep Res J. 2024;11(1):25–56. doi:10.13140/RG.2.2.30103.55207
  • Tula MY, Enabulele OI, Ophori EA, Aziegbemhin AS, Iyoha O, Filgona J. A Systematic Review of the Current Status of Carbapenem Resistance in Nigeria: its Public Health Implication for National Intervention. Niger Postgraduate Med J. 2023;30(1):1. doi:10.4103/npmj.npmj_240_22
  • Nieto-Saucedo JR, López-Jacome LE, Franco-Cendejas R, et al. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics. 2023;12(8):1295. doi:10.3390/antibiotics12081295
  • Nordmann P, Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis. 2019;69(Suppl 7):S521–S528. doi:10.1093/cid/ciz824
  • Dossouvi KM, Katawa G, Karou SD. Carbapenemase Detection and Identification: which method should be Chosen? Archive Clin Med Microbiol. 2023;2(4):126–137. doi:10.33140/ACMMJ.02.04.05
  • Reyes JA, Melano R, Cárdenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz J Infect Dis. 2020;24(3):231–238. doi:10.1016/j.bjid.2020.03.002
  • Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz J Microbiol. 2016;47(4):785–792. doi:10.1016/j.bjm.2016.06.005
  • Acman M, Wang R, van Dorp L, et al. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat Commun. 2022;13(1):1131. doi:10.1038/s41467-022-28819-2
  • Beig M, Badmasti F, Solgi H, Nikbin VS, Sholeh M. Carbapenemase genes distribution in clonal lineages of Acinetobacter baumannii: a comprehensive study on plasmids and chromosomes. Front Cell Infect Microbiol. 2023;13. doi:10.3389/fcimb.2023.1283583
  • Lo S, Lolom I, Goldstein V, et al. Simultaneous Hospital Outbreaks of New Delhi Metallo-β-Lactamase-Producing Enterobacterales Unraveled Using Whole-Genome Sequencing. Microbiol Spectrum. 2022;10:e0228721. doi:10.1128/spectrum.02287-21
  • Ramsamy Y, Mlisana KP, Amoako DG, et al. Mobile genetic elements-mediated Enterobacterales-associated carbapenemase antibiotic resistance genes propagation between the environment and humans: a One Health South African study. Sci Total Environ. 2022;806(Pt 3):150641. doi:10.1016/j.scitotenv.2021.150641
  • Das S. The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Infect Dis Now. 2023;53(1):104628. doi:10.1016/j.idnow.2022.09.023
  • Rincón-Real AA, Suárez-Alfonso MC. Carbapenem resistance in critically important human pathogens isolated from companion animals: a systematic literature review. PHRP. 2022;13(6):407–423. doi:10.24171/j.phrp.2022.0033
  • da Silva JM, Menezes J, Marques C, Pomba CF. Companion Animals—An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics (Basel). 2022;11(4):533. doi:10.3390/antibiotics11040533
  • Mills MC, Lee J. The threat of carbapenem-resistant bacteria in the environment: evidence of widespread contamination of reservoirs at a global scale. Environ Pollut. 2019;255(Pt 1):113143. doi:10.1016/j.envpol.2019.113143
  • Oliveira M, Leonardo IC, Nunes M, Silva AF, Barreto Crespo MT. Environmental and Pathogenic Carbapenem Resistant Bacteria Isolated from a Wastewater Treatment Plant Harbour Distinct Antibiotic Resistance Mechanisms. Antibiotics. 2021;10(9):1118. doi:10.3390/antibiotics10091118
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • Thompson T. The staggering death toll of drug-resistant bacteria. Nature. 2022. doi:10.1038/d41586-022-00228-x
  • Brahmi S, Touati A, Cadière A, et al. First Description of Two Sequence Type 2 Acinetobacter baumannii Isolates Carrying OXA-23 Carbapenemase in Pagellus acarne Fished from the Mediterranean Sea near Bejaia, Algeria. Antimicrob. Agents Chemother. 2016:15. doi:10.1128/aac.02384-15
  • Morakchi H, Loucif L, Gacemi-Kirane D, Rolain JM. Molecular characterisation of carbapenemases in urban pigeon droppings in France and Algeria. J Global Antimicrob Resist. 2017;9:103–110. doi:10.1016/j.jgar.2017.02.010
  • Djenadi K, Zhang L, Murray AK, Gaze WH. Carbapenem resistance in bacteria isolated from soil and water environments in Algeria. J Global Antimicrob Resist. 2018;15:262–267. doi:10.1016/j.jgar.2018.07.013
  • Chabou S, Leulmi H, Davoust B, Aouadi A, Rolain JM. Prevalence of extended-spectrum β-lactamase- and carbapenemase-encoding genes in poultry faeces from Algeria and Marseille, France. J Global Antimicrob Resist. 2018;13:28–32. doi:10.1016/j.jgar.2017.11.002
  • Yousfi M, Touati A, Mairi A, et al. Emergence of Carbapenemase-Producing Escherichia coli Isolated from Companion Animals in Algeria. Microb Drug Resist. 2016;22(4):342–346. doi:10.1089/mdr.2015.0196
  • Bachiri T, Bakour S, Lalaoui R, et al. Occurrence of Carbapenemase-Producing Enterobacteriaceae Isolates in the Wildlife: first Report of OXA-48 in Wild Boars in Algeria. Microb Drug Resist. 2018;24(3):337–345. doi:10.1089/mdr.2016.0323
  • Bouaziz A, Loucif L, Ayachi A, Guehaz K, Bendjama E, Rolain JM. Migratory White Stork (Ciconia ciconia): a Potential Vector of the OXA-48-Producing Escherichia coli ST38 Clone in Algeria. Microb Drug Resist. 2018;24(4):461–468. doi:10.1089/mdr.2017.0174
  • Yaici L, Haenni M, Saras E, Boudehouche W, Touati A, Madec JY. blaNDM-5-carrying IncX3 plasmid in Escherichia coli ST1284 isolated from raw milk collected in a dairy farm in Algeria. J Antimicrob Chemother. 2016;71(9):2671–2672. doi:10.1093/jac/dkw160
  • Boutarfi Z, Rebiahi SA, Morghad T, et al. Biocide tolerance and antibiotic resistance of Enterobacter spp. isolated from an Algerian hospital environment. J Global Antimicrob Resist. 2019;18:291–297. doi:10.1016/j.jgar.2019.04.005
  • Yousfi M, Touati A, Muggeo A, et al. Clonal dissemination of OXA-48-producing Enterobacter cloacae isolates from companion animals in Algeria. J Global Antimicrob Resist. 2018;12:187–191. doi:10.1016/j.jgar.2017.10.007
  • Mairi A, Pantel A, Ousalem F, Sotto A, Touati A, Lavigne JP. OXA-48-producing Enterobacterales in different ecological niches in Algeria: clonal expansion, plasmid characteristics and virulence traits. J Antimicrob Chemother. 2019;74(7):1848–1855. doi:10.1093/jac/dkz146
  • Chenouf NS, Carvalho I, Messaï CR, et al. Extended Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Broiler Liver in the Center of Algeria, with Detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichia coli. Microb Drug Resist. 2021;27(2):268–276. doi:10.1089/mdr.2020.0024
  • Chaalal N, Touati A, Bakour S, et al. Spread of OXA-48 and NDM-1-Producing Klebsiella pneumoniae ST48 and ST101 in Chicken Meat in Western Algeria. Microb Drug Resist. 2021;27(4):492–500. doi:10.1089/mdr.2019.0419
  • Cherak Z, Loucif L, Bendjama E, et al. Dissemination of Carbapenemases and MCR-1 Producing Gram-Negative Bacteria in Aquatic Environments in Batna, Algeria. Antibiotics. 2022;11(10):1314. doi:10.3390/antibiotics11101314
  • Bendjama E, Loucif L, Chelaghma W, et al. First detection of an OXA-48-producing Enterobacter cloacae isolate from currency coins in Algeria. J Global Antimicrob Resist. 2020;23:162–166. doi:10.1016/j.jgar.2020.09.003
  • Chelaghma W, Loucif L, Bendjama E, Cherak Z, Bendahou M, Rolain JM. Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. Antibiotics. 2022;11(8):988. doi:10.3390/antibiotics11080988
  • Loucif L, Chelaghma W, Bendjama E, et al. Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms. 2022;10(5):975. doi:10.3390/microorganisms10050975
  • Mohamed L, Ge Z, Yuehua L, et al. Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Trop Anim Health Prod. 2018;50(3):547–553. doi:10.1007/s11250-017-1467-5
  • Moussé W, Sina H, Baba-Moussa F, et al. Identification of Extended-Spectrum β-Lactamases Escherichia coli Strains Isolated from Market Garden Products and Irrigation Water in Benin. Biomed Res. Int. 2015;2015:e286473. doi:10.1155/2015/286473
  • Markkanen MA, Haukka K, Pärnänen KMM, et al. Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. mSphere. 2023;8(1):e00538–22. doi:10.1128/msphere.00538-22
  • Dougnon V, Houssou VMC, Anago E, et al. Assessment of the Presence of Resistance Genes Detected from the Environment and Selected Food Products in Benin. J Environ Public Health. 2021;2021:e8420590. doi:10.1155/2021/8420590
  • Sintondji K, Fabiyi K, Hougbenou J, et al. Prevalence and characterization of ESBL-producing Escherichia coli in healthy pregnant women and hospital environments in Benin: an approach based on Tricycle. Front Public Health. 2023;11:2700. doi:10.3389/fpubh.2023.1227000
  • Tapela K, Rahube T. Isolation and antibiotic resistance profiles of bacteria from influent, effluent and downstream: a study in Botswana. AJMR. 2019;13(15):279–289. doi:10.5897/AJMR2019.9065
  • Bougnom BP, Zongo C, McNally A, et al. Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environ. Res. 2019;168:14–24. doi:10.1016/j.envres.2018.09.022
  • Garba Z, Bonkoungou IOJ, Millogo NO, et al. Wastewater from healthcare centers in Burkina Faso is a source of ESBL, AmpC-β-lactamase and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae. BMC Microbiol. 2023;23(1):351. doi:10.1186/s12866-023-03108-0
  • Doutoum AA, Tidjani A, Doungous DM. Prevalence and resistance profile of strains of bacteria isolated from meals in N’djamena, Chad. Int J Med. 2019;6(6):42–50.
  • Markhous NA, Tidjani A. Laboratoire de Recherche en Sciences des Aliments et Nutrition (LARSAN), Faculté des Sciences de la Santé Humaine (FSSH), Université de N’Djamena, P.O.BOX 1117, Tchad, et al. Microbiological Characteristics and Resistance Profile of Isolated Bacteria in Market Garden Products in N’Djamena, Chad. JFoodStab. 2019;2(1):21–30. doi:10.36400/J.Food.Stab.2.1.2019-0006
  • Founou LL, Founou RC, Allam M, Ismail A, Djoko CF, Essack SY. Genome Sequencing of Extended-Spectrum β-Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolated from Pigs and Abattoir Workers in Cameroon. Front Microbiol. 2018;9:188. doi:10.3389/fmicb.2018.00188
  • Tangwa BV, Keubou H, Nfor EN, Ngakou A. Antimicrobial Resistance Profile of Bacteria Isolated from Boreholes and Hand Dug Wells Water in Ngaoundere Municipality of Adamawa Region in Cameroon. Adv Microbiol. 2019;9(7):629–645. doi:10.4236/aim.2019.97039
  • Leinyuy JF, Ali IM, Karimo O, Tume CB. Patterns of Antibiotic Resistance in Enterobacteriaceae Isolates from Broiler Chicken in the West Region of Cameroon: a Cross-Sectional Study. Can. J. Infect. Dis. Med. Microbiol. 2022;2022:e4180336. doi:10.1155/2022/4180336
  • Djuikoue I, Wega F, Dayomo A, et al. Freshwater Linked Resistance Profile and Prevalence of Escherichia Coli Producing ESBL Type CTX-M Strains in Cameroon Urban Cities. Front Environ Microbiol. 2022;8:55–61. doi:10.11648/j.fem.20220803.12
  • À AJ OZ, Amandine P, Elsie PDM, et al. Antimicrobial Resistance Pattern of Escherichia coli Strains Isolated from Meat and Fish Products Collected in Retail Market in Douala, Cameroon. Am J Microbiol Res. 2023;11(4):97–105. doi:10.12691/ajmr-11-4-2
  • Moffo F, Mouiche MMM, Djomgang HK, et al. Poultry Litter Contamination by Escherichia coli Resistant to Critically Important Antimicrobials for Human and Animal Use and Risk for Public Health in Cameroon. Antibiotics. 2021;10(4):402. doi:10.3390/antibiotics10040402
  • Devarajan N, Köhler T, Sivalingam P, et al. Antibiotic resistant Pseudomonas spp. in the aquatic environment: a prevalence study under tropical and temperate climate conditions. Water Res. 2017;115:256–265. doi:10.1016/j.watres.2017.02.058
  • Mohamed HS, Galal L, Hayer J, et al. Genomic epidemiology of carbapenemase-producing Gram-negative bacteria at the human-animal-environment interface in Djibouti city, Djibouti. Science of the Total Environment. 2023;905:167160. doi:10.1016/j.scitotenv.2023.167160
  • Yigrem C, Amare A, Eribo B. Prevalence of Carbapenem Resistant Acinetobacter Baumannii in Leafy Vegetable Samples and Clinical Sources from Gondar Northwest Ethiopia. J Microbiol Res. 2021;11(1):8–20. doi:10.5923/j.microbiology.20211101.02
  • Yitayew B, Woldeamanuel Y, Asrat D, et al. Carbapenemase-producing Aeromonas species isolated from the urban-impacted Akaki river in Ethiopia. J Water Health. 2022;20(6):903–914. doi:10.2166/wh.2022.307
  • Yitayew B, Woldeamanuel Y, Asrat D, et al. Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. Environ Sci Pollut Res. 2022;29(46):70040–70055. doi:10.1007/s11356-022-20684-2
  • Asfaw T, Genetu D, Shenkute D, Shenkutie TT, Amare YE, Yitayew B. High Levels of Multidrug-Resistant and Beta-Lactamase-Producing Bacteria in Meat and Meat Contact Surfaces, Debre Berhan Town, Ethiopia. IDR. 2023;16:1965–1977. doi:10.2147/IDR.S405582
  • Yigrem C, Fisseha R, Eribo B. Characterization of Carbapenem and β-lactam Resistance in Klebsiella pneumoniae Associated with Leafy Vegetables and Clinical Isolates from Gondar, Ethiopia. J Microbiol Res. 2021;11(1):21–32. doi:10.5923/j.microbiology.20211101.03
  • Alemu A, Girma S, Mariam SH. An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food – a Formidable Combination! IDR. 2023;16:1029–1037. doi:10.2147/IDR.S391072
  • Abdallah HM, Reuland EA, Wintermans BB, et al. Extended-Spectrum β-Lactamases and/or Carbapenemases-Producing Enterobacteriaceae Isolated from Retail Chicken Meat in Zagazig, Egypt. PLoS One. 2015;10(8):e0136052. doi:10.1371/journal.pone.0136052
  • Hamza E, Dorgham SM, Hamza DA. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J Global Antimicrob Resist. 2016;7:8–10. doi:10.1016/j.jgar.2016.06.004
  • Braun SD, Ahmed MFE, El-Adawy H, et al. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt. Front Microbiol. 2016:7. doi:10.3389/fmicb.2016.01020
  • Ramadan H, Gupta SK, Sharma P, et al. Circulation of emerging NDM-5-producing Escherichia coli among humans and dogs in Egypt. Zoonoses Public Health. 2020;67(3):324–329. doi:10.1111/zph.12676
  • Elmonir W, Shalaan S, Tahoun A, et al. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog. 2021;13(1):8. doi:10.1186/s13099-021-00402-y
  • Sadek M, Soliman AM, Nariya H, Shimamoto T, Shimamoto T. Genetic Characterization of Carbapenemase-Producing Enterobacter cloacae Complex and Pseudomonas aeruginosa of Food of Animal Origin from Egypt. Microb Drug Resist. 2021;27(2):196–203. doi:10.1089/mdr.2019.0405
  • Sadek M, Poirel L, Nordmann P, Nariya H, Shimamoto T, Shimamoto T. Genetic characterisation of NDM-1 and NDM-5-producing Enterobacterales from retail chicken meat in Egypt. J Glob Antimicrob Resist. 2020;23:70–71. doi:10.1016/j.jgar.2020.07.031
  • Sadek M, Nariya H, Shimamoto T, et al. First Genomic Characterization of blaVIM-1 and mcr-9-Coharbouring Enterobacter hormaechei Isolated from Food of Animal Origin. Pathogens. 2020;9(9):687. doi:10.3390/pathogens9090687
  • Elafify M, Khalifa HO, Al-Ashmawy M, et al. Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt. J Environ Sci Health Part B. 2020;55(3):265–272. doi:10.1080/03601234.2019.1686312
  • Abdel-Kader F, Hamza E, Abdel-Moein KA, Sabry MA. Retail chicken giblets contaminated with extended-spectrum cephalosporin- and carbapenem-resistant Salmonella enterica carrying blaCMY-2. Vet World. 2022;15(5):1297–1304. doi:10.14202/vetworld.2022.1297-1304
  • Elshafiee EA, Kadry M, Nader SM, Ahmed ZS. Extended-spectrum-beta-lactamases and carbapenemase-producing Klebsiella pneumoniae isolated from fresh produce farms in different governorates of Egypt. Vet World. 2022;15(5):1191–1196. doi:10.14202/vetworld.2022.1191-1196
  • Elmonir W, Abd El-Aziz NK, Tartor YH, et al. Emergence of Colistin and Carbapenem Resistance in Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae Isolated from Chickens and Humans in Egypt. Biology. 2021;10(5):373. doi:10.3390/biology10050373
  • Algammal AM, Hashem HR, Alfifi KJ, et al. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep. 2021;11(1):9476. doi:10.1038/s41598-021-88861-w
  • Sadek M, Ortiz de la Rosa JM, Ramadan M, Nordmann P, Poirel L. Molecular characterization of extended-spectrum ß-lactamase producers, carbapenemase producers, polymyxin-resistant, and fosfomycin-resistant Enterobacterales among pigs from Egypt. J Global Antimicrob Resist. 2022;30:81–87. doi:10.1016/j.jgar.2022.05.022
  • Adel WA, Ahmed AM, Hegazy Y, Torky HA, Shimamoto T. High Prevalence of ESBL and Plasmid-Mediated Quinolone Resistance Genes in Salmonella enterica Isolated from Retail Meats and Slaughterhouses in Egypt. Antibiotics. 2021;10(7):881. doi:10.3390/antibiotics10070881
  • Hamza D, Dorgham S, Ismael E, et al. Emergence of β-lactamase- and carbapenemase- producing Enterobacteriaceae at integrated fish farms. Antimicrob Resist Infect Control. 2020;9(1):67. doi:10.1186/s13756-020-00736-3
  • Abdel-Rhman SH. Characterization of β-lactam resistance in K. pneumoniae associated with ready-to-eat processed meat in Egypt. PLoS One. 2020;15(9):e0238747. doi:10.1371/journal.pone.0238747
  • Gharieb R, Saad M, Khedr M, El Gohary A, Ibrahim H. Occurrence, virulence, carbapenem resistance, susceptibility to disinfectants and public health hazard of Pseudomonas aeruginosa isolated from animals, humans and environment in intensive farms. J Appl Microbiol. 2022;132(1):256–267. doi:10.1111/jam.15191
  • Elshafiee EA, Nader SM, Dorgham SM, Hamza DA. Carbapenem-resistant Pseudomonas Aeruginosa Originating from Farm Animals and People in Egypt. J Vet Res. 2019;63(3):333–337. doi:10.2478/jvetres-2019-0049
  • Mbehang Nguema PP, Onanga R, Ndong Atome GR, et al. Characterization of ESBL-Producing Enterobacteria from Fruit Bats in an Unprotected Area of Makokou, Gabon. Microorganisms. 2020;8(1):138. doi:10.3390/microorganisms8010138
  • Woksepp H, Camara F, Bonnedahl J. High prevalence of blaCTX-M-15 type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): a threatened species with substantial human interaction. MicrobiologyOpen. 2023;12(2):e1349. doi:10.1002/mbo3.1349
  • Donkor E, Anim-Baidoo I, Fei E, et al. Occurrence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Nile Tilapia Sold in Some Markets in Accra, Ghana: public Health Implication. J Food Res. 2018;7(6):p129. doi:10.5539/jfr.v7n6p129
  • Ohene Larbi R, Ofori LA, Sylverken AA, Ayim-Akonor M, Obiri-Danso K. Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana. Int J Microbiol. 2021;2021:e5158185. doi:10.1155/2021/5158185
  • Obeng-Nkrumah N, Labi AK, Blankson H, et al. Household cockroaches carry CTX-M-15-, OXA-48- and NDM-1-producing enterobacteria, and share beta-lactam resistance determinants with humans. BMC Microbiol. 2019;19(1):272. doi:10.1186/s12866-019-1629-x
  • Quarcoo G, Boamah Adomako LA, Abrahamyan A, et al. What Is in the Salad? Escherichia coli and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana. Int J Environ Res Public Health. 2022;19(19):12722. doi:10.3390/ijerph191912722
  • Baah DA, Kotey FCN, Dayie NTKD, Codjoe FS, Tetteh-Quarcoo PB, Donkor ES. Multidrug-Resistant Gram-Negative Bacteria Contaminating Raw Meat Sold in Accra, Ghana. Pathogens. 2022;11(12):1517. doi:10.3390/pathogens11121517
  • Odoi H, Boamah VE, Duah Boakye Y, Dodoo CC, Agyare C. Sensitivity Patterns, Plasmid Profiles and Clonal Relatedness of Multi-Drug Resistant Pseudomonas aeruginosa Isolated From the Ashanti Region, Ghana. Environ Health Insights. 2022;16:11786302221078116. doi:10.1177/11786302221078117
  • Carole GMV, Kouadio GN, Baguy OM, et al. Antimicrobial Resistance Profile and Molecular Characterization of Extended-spectrum Beta-lactamase Genes in Enterobacteria Isolated from Human, Animal and Environment. J Adv Microbiol. 2018:1–9. doi:10.9734/JAMB/2018/39955
  • Byrne RL, Cocker D, Alyayyoussi G, et al. A novel, magnetic bead‐based extraction method for the isolation of antimicrobial resistance genes with a case study in river water in Malawi. J Appl Microbiol. 2022;133(5):3191–3200. doi:10.1111/jam.15755
  • Hassan LE, Tounsi A, Amir S, Soraa N, Ouazzani N. Microbial Resistance to Carbapenems in Effluents from Gynaecological, Paediatric and Surgical Hospital Units. Antibiotics. 2022;11(8):1103. doi:10.3390/antibiotics11081103
  • Hafiane FZ, Tahri L, Ameur N, Rochdi R, Arifi K, Fekhaui M. Antibiotic Resistance of Pseudomonas aeruginosa in Well Waters in Irrigated Zone (Middle Atlas-Morocco). Nat Environ Pollut Technol. 2019;18(4).
  • Tahri L, Hafiane FZ, Fekhaoui M. Prevalence and antibiotic resistance of the Escherichia coli in the groundwater (Tadla-Morocco). Groundwater Sustainable Dev. 2021;13:100572. doi:10.1016/j.gsd.2021.100572
  • Ojo OE, Schwarz S, Michael GB. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol. 2016;194:62–68. doi:10.1016/j.vetmic.2016.04.022
  • Obasi AI, Ugoji EO, Nwachukwu SU. Incidence and molecular characterization of multidrug resistance in Gram-negative bacteria of clinical importance from pharmaceutical wastewaters in South-western Nigeria. Environ DNA. 2019;1(3):268–280. doi:10.1002/edn3.28
  • Adelowo OO, Vollmers J, Mäusezahl I, Kaster AK, Müller JA. Detection of the carbapenemase gene blaVIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Sci Rep. 2018;8(1):15116. doi:10.1038/s41598-018-33535-3
  • Ejikeugwu C, Charles E, Iroha I, et al. Detection of Metallo-β-lactamase (MBL) among Carbapenem-Resistant Gram-Negative Bacteria from Rectal Swabs of Cow and Cloacae Swabs of Poultry Birds. Ann Med Health Sci Res. 2017;7:51–56.
  • Udoekong NS, Bassey BE, Asuquo AE, Akan OD, Ifeanyi CIC. Prevalence and Antimicrobial Resistance of Gram-Negative Bacteria Isolates in Shellfish Samples from Two River Estuaries in South-South Nigeria. Adv Microbiol. 2021;11(9):428–443. doi:10.4236/aim.2021.119032
  • Oloke J, Jo O, A O, Muhibi M. COMPARISON OF CARBAPENEM RESISTANCE AMONG CLINICAL AND ENVIRONMENTAL PSEUDOMONAS AERUGINOSA IN SOUTH WEST NIGERIA. Inter J Scient Res. 2019;10:33863–33867. doi:10.24327/ijrsr.2019.1007.3769
  • Ejikeugwu C, Saki M, Nwakaeze E, et al. Characterization of metallo-β-lactamases-encoding genes blaIMP-1 and blaVIM-1 amongst Klebsiella pneumoniae from abattoir samples of Ebonyi state, southeastern Nigeria. Gene Rep. 2019;16:100428. doi:10.1016/j.genrep.2019.100428
  • Ngbede EO, Adekanmbi F, Poudel A, et al. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front Microbiol. 2021;12:348. doi:10.3389/fmicb.2021.740348
  • Ngbede EO, Poudel A, Kalalah A, et al. Identification of mobile colistin resistance genes (mcr-1.1, mcr-5 and mcr-8.1) in Enterobacteriaceae and Alcaligenes faecalis of human and animal origin, Nigeria. Int J Antimicrob Agents. 2020;56(3):106108. doi:10.1016/j.ijantimicag.2020.106108
  • Le Terrier C, Masseron A, Uwaezuoke NS, et al. Wide spread of carbapenemase-producing bacterial isolates in a Nigerian environment. J Global Antimicrob Resist. 2020;21:321–323. doi:10.1016/j.jgar.2019.10.014
  • Egbule OS, Yusuf I. Multiple Antibiotic Resistances in Escherichia coli Isolated from Cattle and Poultry Faeces in Abraka, South-South Nigeria. Int J Med. 2019.
  • Aghanya IN, Akujobi CN, Ushie SN, et al. Carbapenemase-producing Klebsiella pneumoniae Isolated from Environmental Sources in a Tertiary Health Institution in Nigeria. J Appl Environ Microbiol. 2021;9(1):22–27.
  • Ada KOE, Clare EC, Chidinma OES, Goodluck UO, Ei A. Isolation of Multidrug Resistant and Extended Spectrum β-Lactamase Producing Bacteria from Faecal Samples of Piggery Farms in Anambra State, Nigeria. Am J Infectious Dis Microbiol. 2021;9(4):106–113. doi:10.12691/ajidm-9-4-1
  • Akpan SN, Odeniyi OA, Adebowale O, Alarape SA, Adeyemo OK. Antibiotic resistance profile of Gram-negative bacteria isolated from Lafenwa abattoir effluent and its receiving water (Ogun River) in Abeokuta, Ogun state, Nigeria. Onderstepoort J Vet Res. 2020;87(1):1–6. doi:10.4102/ojvr.v87i1.1854
  • Egbule OS, Iweriebor BC, Odum EI. Beta-Lactamase-Producing Escherichia coli Isolates Recovered from Pig Handlers in Retail Shops and Abattoirs in Selected Localities in Southern Nigeria: implications for Public Health. Antibiotics. 2021;10(1):9. doi:10.3390/antibiotics10010009
  • Akinola OT, Onyeaghasiri FU, Oluranti OO, Elutade OO. Assessment of well water as a reservoir for extended-spectrum β-lactamases (ESBL) and carbapenem resistant Enterobacteriaceae from Iwo, Osun state, Nigeria. Iran J Microbiol. 2022;14(3):351–361. doi:10.18502/ijm.v14i3.9772
  • Adebowale O, Makanjuola M, Bankole N, et al. Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics. 2022;11(2):253. doi:10.3390/antibiotics11020253
  • Tula MY, Enabulele OI, Ophori EA, Okojie RO, Joel F. Emergence of New Delhi metallo-β-lactamase-1 (NDM-1) producing Enterobacterales from water sources: an impending public health challenge in Adamawa-north senatorial zone, Nigeria. Afr J Clin Exp Microbiol. 2023;24(3):258–265. doi:10.4314/ajcem.v24i3.5
  • Joseph IS, Okolo IO, Udenweze EC, et al. Comparison of Antibiotic-Resistant Pattern of Extended Spectrum Beta-Lactamase and Carbapenem-Resistant Escherichia Coli Isolates from Clinical and Non-Clinical Sources. J Drug Delivery Ther. 2023;13(7):107–118. doi:10.22270/jddt.v13i7.5918
  • Adesiyan IM, Bisi-Johnson MA, Okoh AI. Incidence of antibiotic resistance genotypes of Vibrio species recovered from selected freshwaters in Southwest Nigeria. Sci Rep. 2022;12(1):18912. doi:10.1038/s41598-022-23479-0
  • Agboola T, Nmema E, Samuel T, Odetoyin B. Multiple Antibiotic Resistant Vibrio Pathotypes with the Incidence of V. Cholerae and V. parahaemolyticus in Fish and Fish Storage Water in Okitipupa and Igbokoda Areas, Nigeria. South Asian J Res Microbiol. 2022;13:11–23. doi:10.9734/SAJRM/2022/v13i4254
  • Onyi PN, Gugu TH, Ozoude EC, et al. Prevalence of Metallo- β- Lactamases (MBLs) in carbapenem non-susceptible Escherichia coli isolated from major meat sources. J Pharma Allied Sci. 2021;18(2):3395–3403.
  • Gay N, Leclaire A, Laval M, et al. Risk Factors of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Occurrence in Farms in Reunion, Madagascar and Mayotte Islands, 2016–2017. Veterinary Sci. 2018;5(1):22. doi:10.3390/vetsci5010022
  • Kempf M, Rolain JM, Diatta G, et al. Carbapenem resistance and Acinetobacter baumannii in Senegal: the paradigm of a common phenomenon in natural reservoirs. PLoS One. 2012;7(6):e39495. doi:10.1371/journal.pone.0039495
  • Baron SA, Mediannikov O, Abdallah R, et al. Multidrug-Resistant Klebsiella pneumoniae Clones from Wild Chimpanzees and Termites in Senegal. Antimicrob. Agents Chemother. 2021:20. doi:10.1128/aac.02557-20
  • Anane AY, Apalata T, Vasaikar S, Okuthe GE, Songca S. Prevalence and molecular analysis of multidrug-resistant Acinetobacter baumannii in the extra-hospital environment in Mthatha, South Africa. Braz J Infect Dis. 2019;23(6):371–380. doi:10.1016/j.bjid.2019.09.004
  • Tshitshi L, Manganyi MC, Montso PK, Mbewe M, Ateba CN. Extended Spectrum Beta-Lactamase-Resistant Determinants among Carbapenem-Resistant Enterobacteriaceae from Beef Cattle in the North West Province, South Africa: a Critical Assessment of Their Possible Public Health Implications. Antibiotics. 2020;9(11):820. doi:10.3390/antibiotics9110820
  • Iweriebor BC, Egbule OS, Obi LC. The Emergence of Colistin- and Imipenem-Associated Multidrug Resistance in Isolates from Retail Meat. Polish J Microbiol. 2022;71(4):519–528. doi:10.33073/pjm-2022-046
  • Raseala C, Ekwanzala M, Momba M. Multilocus-based phylogenetic analysis of extended-spectrum beta-lactamase Escherichia coli O157:H7 uncovers related strains between agriculture and nearby water sources. J Infection Public Health. 2020;13. doi:10.1016/j.jiph.2020.10.016
  • Igere BE, Okoh AI, Nwodo UU. Antibiotic Susceptibility Testing (AST) Reports: a Basis for Environmental/Epidemiological Surveillance and Infection Control Amongst Environmental Vibrio cholerae. Int J Environ Res Public Health. 2020;17(16):5685. doi:10.3390/ijerph17165685
  • Ebomah KE, Okoh AI. Detection of Carbapenem-Resistance Genes in Klebsiella Species Recovered from Selected Environmental Niches in the Eastern Cape Province, South Africa. Antibiotics. 2020;9(7):425. doi:10.3390/antibiotics9070425
  • Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Tracking the environmental dissemination of carbapenem-resistant Klebsiella pneumoniae using whole genome sequencing. Science of the Total Environment. 2019;691:80–92. doi:10.1016/j.scitotenv.2019.06.533
  • Abdalla SE, Abia ALK, Amoako DG, Perrett K, Bester LA, Essack SY. From Farm-to-Fork: e. Coli from an Intensive Pig Production System in South Africa Shows High Resistance to Critically Important Antibiotics for Human and Animal Use. Antibiotics. 2021;10(2):178. doi:10.3390/antibiotics10020178
  • Ekwanzala MD, Budeli P, Dewar JB, Kamika I, Momba MNB. Draft Genome Sequences of Novel Sequence Type 3559 Carbapenem-Resistant Klebsiella pneumoniae Isolates Recovered from the Environment. Microbiol Resource Announcements. 2019;8(23). doi:10.1128/mra.00518-19
  • Glover B, Wentzel J, Jenkins A, Van Vuuren M. The first report of Escherichia fergusonii isolated from non-human primates, in Africa. One Health. 2017;3:70–75. doi:10.1016/j.onehlt.2017.05.001
  • Ekwanzala M, Dewar J, Kamika I, Momba M. Genome sequence of carbapenem-resistant Citrobacter koseri carrying blaOXA-181 isolated from sewage sludge. J Global Antimicrob Resist. 2019;20. doi:10.1016/j.jgar.2019.07.011
  • Dheda KR, Centner CM, Wilson L, et al. Intensive Care Unit Sluice Room Sinks as Reservoirs and Sources of Potential Transmission of Carbapenem-Resistant Bacteria in a South African Tertiary Care Hospital. IDR. 2023;16:5427–5432. doi:10.2147/IDR.S418620
  • Badri AM, Ibrahim IT, Mohamed SG, Garbi MI, Kabbashi AS, Arbab MH. Prevalence of Extended Spectrum Beta Lactamase (ESBL) Producing Escherichia coli and Klebsiella pneumoniae Isolated from Raw Milk Samples in Al Jazirah State, Sudan. Mol Biol. 2017;7(1). doi:10.4172/2168-9547.1000201
  • Feng C, Wen P, Xu H, et al. Emergence and Comparative Genomics Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Carrying mcr-1 in Fennec Fox Imported from Sudan to China. mSphere. 2019;4(6). doi:10.1128/msphere.00732-19
  • Moremi N, Manda EV, Falgenhauer L, et al. Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Front Microbiol. 2016;7:862. doi:10.3389/fmicb.2016.01862
  • Kimera ZI, Mgaya FX, Mshana SE, Karimuribo ED, Matee MIN. Occurrence of Extended Spectrum Beta Lactamase (ESBL) Producers, Quinolone and Carbapenem Resistant Enterobacteriaceae Isolated from Environmental Samples along Msimbazi River Basin Ecosystem in Tanzania. Int J Environ Res Public Health. 2021;18(16):8264. doi:10.3390/ijerph18168264
  • Seguni NZ, Kimera ZI, Msafiri F, et al. Multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from hospital sewage flowing through community sewage system and discharging into the Indian Ocean. Bull Natl Res Cent. 2023;47(1):66. doi:10.1186/s42269-023-01039-4
  • Kimera ZI, Mgaya FX, Misinzo G, Mshana SE, Moremi N, Matee MIN. Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics. 2021;10(4):406. doi:10.3390/antibiotics10040406
  • Ben Sallem R, Ben Slama K, Sáenz Y, et al. Prevalence and Characterization of Extended-Spectrum Beta-Lactamase (ESBL)– and CMY-2–Producing Escherichia coli Isolates from Healthy Food-Producing Animals in Tunisia. Foodborne Pathogens Dis. 2012;9(12):1137–1142. doi:10.1089/fpd.2012.1267
  • Dziri R, Klibi N, Alonso CA, et al. Characterization of extended-spectrum β-lactamase (ESBL)-producing Klebsiella, Enterobacter, and Citrobacter obtained in environmental samples of a Tunisian hospital. Diagnostic Microbiol Infectious Dis. 2016;86(2):190–193. doi:10.1016/j.diagmicrobio.2016.07.013
  • Maamar E, Alonso CA, Hamzaoui Z, et al. Emergence of plasmid-mediated colistin-resistance in CMY-2-producing Escherichia coli of lineage ST2197 in a Tunisian poultry farm. Int J Food Microbiol. 2018;269:60–63. doi:10.1016/j.ijfoodmicro.2018.01.017
  • Hassena AB, Belmabrouk S, Amor MGB, et al. Study of Virulence Genes, Antimicrobial Resistance, and Genetic Relatedness of Foodborne Salmonella Isolates from Tunisia. Journal of Food Protection. 2022;85(12):1779–1789. doi:10.4315/JFP-22-167
  • Sola M, Mani Y, Saras E, et al. Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacterales from Tunisian Seafood. Microorganisms. 2022;10(7):1364. doi:10.3390/microorganisms10071364
  • Mani Y, Mansour W, Mammeri H, et al. KPC-3-producing ST167 Escherichia coli from mussels bought at a retail market in Tunisia. J Antimicrob Chemother. 2017;72(8):2403–2404. doi:10.1093/jac/dkx124
  • Mani Y, Mansour W, Lupo A, et al. Spread of blaCTX-M-15-Producing Enterobacteriaceae and OXA-23-Producing Acinetobacter baumannii Sequence Type 2 in Tunisian Seafood. Antimicrob. Agents Chemother. 2018;62(9). doi:10.1128/aac.00727-18
  • Saidani M, Messadi L, Chaouechi A, et al. High Genetic Diversity of Enterobacteriaceae Clones and Plasmids Disseminating Resistance to Extended-Spectrum Cephalosporins and Colistin in Healthy Chicken in Tunisia. Microb Drug Resist. 2019;25(10):1507–1513. doi:10.1089/mdr.2019.0138
  • Landolsi S, Selmi R, Hadjadj L, Ben Haj Yahia A, Messadi L, Rolain JM. Occurrence and characteristics of extended-spectrum-β-lactamase producing Escherichia coli (blaTEM-128) isolated from Mus musculus captured from a veterinary clinic and houses in Tunis, Tunisia. Vet Microbiol. 2023;280:109698. doi:10.1016/j.vetmic.2023.109698
  • Selmi R, Tayh G, Srairi S, et al. Prevalence, risk factors and emergence of extended-spectrum β-lactamase producing-, carbapenem- and colistin-resistant Enterobacterales isolated from wild boar (Sus scrofa) in Tunisia. Microb Pathogenesis. 2022;163:105385. doi:10.1016/j.micpath.2021.105385
  • Lengliz S, Benlabidi S, Raddaoui A, et al. High occurrence of carbapenem‐resistant Escherichia coli isolates from healthy rabbits (Oryctolagus cuniculus): first report of blaIMI and blaVIM type genes from livestock in Tunisia. Lett Appl Microbiol. 2021;73(6):708–717. doi:10.1111/lam.13558
  • Okubo T, Yossapol M, Maruyama F, et al. Phenotypic and genotypic analyses of antimicrobial resistant bacteria in livestock in Uganda. Transbound Emerg Dis. 2019;66(1):317–326. doi:10.1111/tbed.13024
  • Iramiot JS, Kajumbula H, Bazira J, Kansiime C, Asiimwe BB. Antimicrobial resistance at the human–animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci Rep. 2020;10(1):14737. doi:10.1038/s41598-020-70517-w
  • Tuhamize B, Asiimwe BB, Kasaza K, Sabiiti W, Holden M, Bazira J. Klebsiella pneumoniae carbapenamases in Escherichia coli isolated from humans and livestock in rural south-western Uganda. PLoS One. 2023;18(7):e0288243. doi:10.1371/journal.pone.0288243
  • Muleme J, Kankya C, Munyeme M, et al. Phenotypic Characterization and Antibiograms of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated at the Human-Animal-Environment Interface Using a One Health Approach Among Households in Wakiso District, Uganda. IDR. 2023;16:2203–2216. doi:10.2147/IDR.S398951
  • Bagaya J, Ssekatawa K, Nakabiri G, et al. Molecular characterization of Carbapenem-resistant Escherichia coli isolates from sewage at Mulago National Referral Hospital, Kampala: a cross-sectional study. Ann. Microbiol. 2023;73(1):28. doi:10.1186/s13213-023-01732-9
  • Kabali E, Pandey GS, Munyeme M, et al. Identification of Escherichia coli and Related Enterobacteriaceae and Examination of Their Phenotypic Antimicrobial Resistance Patterns: a Pilot Study at A Wildlife–Livestock Interface in Lusaka, Zambia. Antibiotics. 2021;10(3):238. doi:10.3390/antibiotics10030238
  • Mwasinga W, Shawa M, Katemangwe P, et al. Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: public Health Implications. Antibiotics. 2023;12(9):1421. doi:10.3390/antibiotics12091421
  • Takawira H, Mbanga J. Occurrence of multidrug-resistant Escherichia coli and antibiotic resistance genes in a wastewater treatment plant and its associated river water in Harare, Zimbabwe. Water SA. 2023;49(4). doi:10.17159/wsa/2023.v49.i4.4036
  • Sung GH, Kim SH, Park EH, et al. Association of Carbapenemase-Producing Enterobacterales Detected in Stream and Clinical Samples. Front Microbiol. 2022;13:923979. doi:10.3389/fmicb.2022.923979
  • Guo CH, Liu YQ, Li Y, et al. High prevalence and genomic characteristics of carbapenem-resistant Enterobacteriaceae and colistin-resistant Enterobacteriaceae from large-scale rivers in China. Environ. Pollut. 2023;331:121869. doi:10.1016/j.envpol.2023.121869
  • Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics. 2023;12(2):387. doi:10.3390/antibiotics12020387
  • Stolle I, Prenger-Berninghoff E, Stamm I, et al. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs. J Antimicrob Chemother. 2013;68(12):2802–2808. doi:10.1093/jac/dkt259
  • Hamprecht A, Sommer J, Willmann M, et al. Pathogenicity of Clinical OXA-48 Isolates and Impact of the OXA-48 IncL Plasmid on Virulence and Bacterial Fitness. Front Microbiol. 2019;10. doi:10.3389/fmicb.2019.02509
  • Pulss S, Stolle I, Stamm I, et al. Multispecies and Clonal Dissemination of OXA-48 Carbapenemase in Enterobacteriaceae From Companion Animals in Germany, 2009-2016. Front Microbiol. 2018;9:1265. doi:10.3389/fmicb.2018.01265
  • Schmitt K, Biggel M, Stephan R, Willi B. Massive Spread of OXA-48 Carbapenemase-Producing Enterobacteriaceae in the Environment of a Swiss Companion Animal Clinic. Antibiotics (Basel). 2022;11(2):213. doi:10.3390/antibiotics11020213
  • Dossim S, Bonnin RA, Salou M, et al. Occurrence of carbapenemase-producing Enterobacteriaceae in Togo, West Africa. Int J Antimicrob Agents. 2019;53(4):530–532. doi:10.1016/j.ijantimicag.2018.11.019
  • Li X, Fu Y, Shen M, et al. Dissemination of blaNDM-5 gene via an IncX3-type plasmid among non-clonal Escherichia coli in China. Antimicrob Resist Infect Control. 2018;7(1):59. doi:10.1186/s13756-018-0349-6
  • Wang Y, Tong MK, Chow KH, et al. Occurrence of Highly Conjugative IncX3 Epidemic Plasmid Carrying blaNDM in Enterobacteriaceae Isolates in Geographically Widespread Areas. Front Microbiol. 2018;9. doi:10.3389/fmicb.2018.02272
  • Sun P, Xia W, Liu G, et al. Characterization Of blaNDM-5-Positive Escherichia coli Prevalent In A University Hospital In Eastern China. Infect Drug Resist. 2019;12:3029–3038. doi:10.2147/IDR.S225546
  • Zhang Q, Lv L, Huang X, et al. Rapid Increase in Carbapenemase-Producing Enterobacteriaceae in Retail Meat Driven by the Spread of the blaNDM-5-Carrying IncX3 Plasmid in China from 2016 to 2018. Antimicrob Agents Chemother. 2019;63(8):e00573–19. doi:10.1128/AAC.00573-19
  • Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a blaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics. 2022;11(2):196. doi:10.3390/antibiotics11020196
  • Chen Y, Gao J, Zhang H, Ying C. Spread of the blaOXA–23-Containing Tn2008 in Carbapenem-Resistant Acinetobacter baumannii Isolates Grouped in CC92 from China. Front Microbiol. 2017;8:163. doi:10.3389/fmicb.2017.00163
  • Wang D, Yan D, Hou W, Zeng X, Qi Y, Chen J. Characterization of blaOxA-23 gene regions in isolates of Acinetobacter baumannii. J Microbiol Immunol Infect. 2015;48(3):284–290. doi:10.1016/j.jmii.2014.01.007
  • De Belder D, Faccone D, Tijet N, et al. Novel class 1 Integrons and sequence types in VIM-2 and VIM-11-producing clinical strains of Enterobacter cloacae. Infect Genet Evol. 2017;54:374–378. doi:10.1016/j.meegid.2017.07.019
  • Yatsuyanagi J, Saito S, Harata S, et al. Class 1 Integron Containing Metallo-β-Lactamase Gene blaVIM-2 in Pseudomonas aeruginosa Clinical Strains Isolated in Japan. Antimicrob Agents Chemother. 2004;48(2):626–628. doi:10.1128/AAC.48.2.626-628.2004
  • Ingold AJ, Castro M, Nabón A, Borthagaray G, Márquez C. VIM-2 metallo-ß-lactamase gen detection in a class 1 integron associated to bla(CTX-M-2) in a Pseudomonas aeruginosa clinical isolate in Uruguay: first communication. Rev Argent Microbiol. 2011;43(3):198–202. doi:10.1590/S0325-75412011000300004
  • Moore PCL, Lindsay JA. Genetic Variation among Hospital Isolates of Methicillin-Sensitive Staphylococcus aureus: evidence for Horizontal Transfer of Virulence Genes. J Clin Microbiol. 2001;39(8):2760–2767. doi:10.1128/jcm.39.8.2760-2767.2001
  • Wang Z, Wen Z, Jiang M, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: an important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Transbound Emerg Dis. 2022;69(5):e2661–e2676. doi:10.1111/tbed.14615
  • Qiu X, Kulasekara BR, Lory S. Role of Horizontal Gene Transfer in the Evolution of Pseudomonas aeruginosa Virulence. Virulence. 2009. doi:10.1159/000235767
  • Kelly BG, Vespermann A, Bolton DJ. Horizontal gene transfer of virulence determinants in selected bacterial foodborne pathogens. Food and Chemical Toxicology. 2009;47(5):969–977. doi:10.1016/j.fct.2008.02.007
  • Deng Y, Xu H, Su Y, et al. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics. 2019;20(1):761. doi:10.1186/s12864-019-6137-8
  • Huang Y, Li J, Wang Q, Tang K, Cai X, Li C. Detection of carbapenem-resistant hypervirulent Klebsiella pneumoniae ST11-K64 co-producing NDM-1 and KPC-2 in a tertiary hospital in Wuhan. J Hosp Infect. 2023;131:70–80. doi:10.1016/j.jhin.2022.09.014
  • Shao C, Jin Y, Wang W, Jiang M, Zhao S. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae of K57 Capsular Serotype in an Emergency Intensive Care Unit of a Teaching Hospital in China. Front Public Health. 2021;9:724212. doi:10.3389/fpubh.2021.724212
  • Liu S, Ding Y, Xu Y, Li Z, Zeng Z, Liu J. An outbreak of extensively drug-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a teaching hospital in Southwest China. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.979219
  • Ahlstrom CA, Woksepp H, Sandegren L, et al. Genomically diverse carbapenem resistant Enterobacteriaceae from wild birds provide insight into global patterns of spatiotemporal dissemination. Science of the Total Environment. 2022;824:153632. doi:10.1016/j.scitotenv.2022.153632
  • Facciolà A, Pellicanò GF, Visalli G, et al. The role of the hospital environment in the healthcare-associated infections: a general review of the literature. Eur Rev Med Pharmacol Sci. 2019;23(3):1266–1278. doi:10.26355/eurrev_201902_17020
  • Jacob JT, Kasali A, Steinberg JP, Zimring C, Denham ME. The Role of the Hospital Environment in Preventing Healthcare-Associated Infections Caused by Pathogens Transmitted through the Air. HERD. 2013;7(1_suppl):74–98. doi:10.1177/193758671300701S07
  • Sharma S, Pramanik S, Marndi P, Banerjee T. Hospital-acquired infections due to carbapenem-resistant Providencia stuartii. Indian J Med Res. 2023;158(2):145–150. doi:10.4103/ijmr.IJMR_3668_20
  • Aldali HJ, Khan A, Alshehri AA, et al. Hospital-Acquired Infections Caused by Carbapenem-Resistant Enterobacteriaceae: an Observational Study. Microorganisms. 2023;11(6):1595. doi:10.3390/microorganisms11061595
  • Duggett N, AbuOun M, Randall L, et al. The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci Rep. 2020;10(1):19880. doi:10.1038/s41598-020-76877-7
  • Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30(9):401–407. doi:10.1016/j.tig.2014.07.003