222
Views
16
CrossRef citations to date
0
Altmetric
Review

Major miRNA Involved in Insulin Secretion and Production in Beta-Cells

, , ORCID Icon, ORCID Icon &
Pages 89-97 | Published online: 10 Mar 2020

References

  • Liu M, Weiss MA, Arunagiri A, et al. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab. 2018;20:28–50. doi:10.1111/dom.1337830230185
  • Rutter GA, Pullen T, Hodson D, et al. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015;466(2):203–218. doi:10.1042/BJ2014138425697093
  • Fava E, Dehghany J, Ouwendijk J, et al. Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling. Diabetologia. 2012;55(4):1013–1023. doi:10.1007/s00125-011-2438-422252472
  • Fernández-Real J, Pickup J. Innate immunity, insulin resistance and type 2 diabetes. Diabetologia. 2012;55(2):273–278. doi:10.1007/s00125-011-2387-y22124608
  • Yin P. Architecture and Function of the Insulin Granule Secretion Machinery. Acta Universitatis Upsaliensis; 2018.
  • Seino S, Takahashi H, Fujimoto W, et al. Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab. 2009;11(s4):180–188. doi:10.1111/dom.2009.11.issue-s419817800
  • Roger B, Papin J, Vacher P, et al. Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta-cells. Diabetologia. 2011;54(2):390–402. doi:10.1007/s00125-010-1955-x21046358
  • Sonoda N, Imamura T, Yoshizaki T, et al. β-arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic β cells. Proc Natl Acad Sci. 2008;105(18):6614–6619. doi:10.1073/pnas.071040210518445652
  • Quan Y, Barszczyk A, Feng Z-P, et al. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin. 2011;32(6):765. doi:10.1038/aps.2011.5721602835
  • Stuhlmann T, Planells-Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat Commun. 2018;9(1):1974. doi:10.1038/s41467-018-04353-y29773801
  • Real J, Miranda C, Olofsson CS, et al. Lipophilicity predicts the ability of nonsulphonylurea drugs to block pancreatic beta‐cell KATP channels and stimulate insulin secretion; statins as a test case. Endocrinol Diabetes Metab. 2018;1(2):e00017. doi:10.1002/edm2.2018.1.issue-230815553
  • Ashcroft F. KATP Channels and Insulin Secretion: A Key Role in Health and Disease. Portland Press Limited; 2006.
  • Trapp S, Tucker SJ, Ashcroft FM. Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci USA. 1997;94(16):8872–8877. doi:10.1073/pnas.94.16.88729238070
  • Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2(11):805. doi:10.1038/3504104611056535
  • Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25(1):4. doi:10.1038/s41594-017-0011-729323277
  • Ahrén B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8(5):369. doi:10.1038/nrd278219365392
  • Sebastiani G, Mancarella F, Ventriglia G, Nigi L, Valentini M, Grieco GE. MicroRNA miR-124a, a negative regulator of insulin secretion, is hyperexpressed in human pancreatic islets of type 2 diabetic patients. RNA Dis. 2015;2(2).
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509. doi:10.1038/nrm383825027649
  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–3027. doi:10.1101/gad.126250415574589
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–3016. doi:10.1101/gad.115880314681208
  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–2659. doi:10.1101/gad.92780111641272
  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001;293(5532):1146–1150. doi:10.1126/science.106402311498593
  • Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228. doi:10.1038/ncb0309-22819255566
  • Reddy SDN, Ohshiro K, Rayala SK, et al. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res. 2008;68(20):8195–8200. doi:10.1158/0008-5472.CAN-08-210318922890
  • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–1414. doi:10.1016/j.cell.2007.04.04017604727
  • Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns. 2009;9(2):109–113. doi:10.1016/j.gep.2008.10.00118977315
  • Yoon M-S, Choi CS. The role of amino acid-induced mammalian target of rapamycin complex 1 (mTORC1) signaling in insulin resistance. Exp Mol Med. 2017;48(1):e201. doi:10.1038/emm.2015.93
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21. doi:10.1038/nrm302521157483
  • Fang Y, Xue J-L, Shen Q, et al. MicroRNA‐7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3‐kinase/Akt pathway in hepatocellular carcinoma. Hepatology. 2012;55(6):1852–1862. doi:10.1002/hep.2557622234835
  • Cekaite L, Rantala JK, Bruun J. et al. MiR-9, -31, and −182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia. 2012;14(9):868–879. doi:10.1593/neo.12109423019418
  • Kato T, Shimano H, Yamamoto T, et al. Granuphilin is activated by SREBP-1c and involved in impaired insulin secretion in diabetic mice. Cell Metab. 2006;4(2):143–154. doi:10.1016/j.cmet.2006.06.00916890542
  • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–591. doi:10.1038/nature0819719641587
  • K.P. Bagul, S. K Banerjee, Insulin resistance, oxidative stress and cardiovascular complications: role of sirtuins. Curr Pharm Des. 2013;19(32):5663–5677.23448490
  • Chen YR, Lai Y-L, Lin S-D, et al. SIRT1 interacts with metabolic transcriptional factors in the pancreas of insulin-resistant and calorie-restricted rats. Mol Biol Rep. 2013;40(4):3373–3380. doi:10.1007/s11033-012-2412-323292098
  • Langley E, Pearson M, Faretta M, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53‐induced cellular senescence. EMBO J. 2002;21(10):2383–2396. doi:10.1093/emboj/21.10.238312006491
  • Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16(1):93–105. doi:10.1016/j.molcel.2004.08.03115469825
  • Vaquero A, Scher M, Erdjument-Bromage H, et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007;450(7168):440–444. doi:10.1038/nature0626818004385
  • Wang RH, Kim H-S, Xiao C, et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage and insulin resistance. J Clin Invest. 2011;121(11). doi:10.1172/JCI46243
  • Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 2005;4(2):e31. doi:10.1371/journal.pbio.004003116366736
  • Saunders LR, Sharma AD, Tawney J, et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY). 2010;2(7):415. doi:10.18632/aging.v2i720634564
  • Ramachandran D, Roy U, Garg S, et al. Sirt1 and mir‐9 expression is regulated during glucose‐stimulated insulin secretion in pancreatic β‐islets. FEBS J. 2011;278(7):1167–1174. doi:10.1111/j.1742-4658.2011.08042.x21288303
  • Mazzoccoli L, Robaina MC, Apa AG, et al. MiR-29 silencing modulates the expression of target genes related to proliferation, apoptosis and methylation in Burkitt lymphoma cells. J Cancer Res Clin Oncol. 2018;144(3):483–97.29318382
  • Pons S, Asano T, Glasheen E, et al. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol Cell Biol. 1995;15(8):4453–4465. doi:10.1128/MCB.15.8.44537542745
  • Fruman DA, Cantley LC, Carpenter CL. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85α gene. Genomics. 1996;37(1):113–121. doi:10.1006/geno.1996.05278921377
  • Suzuki H, Terauchi Y, Fujiwara M, Aizawa S, Yazaki Y, Kadowaki T, Koyasu S. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science. 1999;283(5400):390–392. doi:10.1126/science.283.5400.3909888854
  • Pandey AK, Verma G, Vig S, et al. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol. 2011;332(1):125–133. doi:10.1016/j.mce.2010.10.00420943204
  • Bagge A, Dahmcke CM, Dalgaard LT. Syntaxin-1a is a direct target of miR-29a in insulin-producing β-cells. Horm Metab Res. 2013;45(06):463–466. doi:10.1055/s-0000002523315993
  • Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193. doi:10.1038/cdd.2009.5619461653
  • Lee J, Padhye A, Sharma A, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem. 2010;285(17):12604–12611. doi:10.1074/jbc.M109.09452420185821
  • Baroukh NN, Van Obberghen E. Function of microRNA‐375 and microRNA‐124a in pancreas and brain. FEBS J. 2009;276(22):6509–6521. doi:10.1111/j.1742-4658.2009.07353.x20102393
  • Baroukh N, Ravier MA, Loder MK, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J Biol Chem. 2007;282(27):19575–19588. doi:10.1074/jbc.M61184120017462994
  • Friedman J, Kaestner K. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63(19):2317–2328. doi:10.1007/s00018-006-6095-616909212
  • Overdier DG, Porcella A, Costa RH. The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol. 1994;14(4):2755–2766. doi:10.1128/MCB.14.4.27558139574
  • Rada-Iglesias A, Wallerman O, Koch C, et al. Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays. Hum Mol Genet. 2005;14(22):3435–3447. doi:10.1093/hmg/ddi37816221759
  • Kaestner KH, Hiemisch H, Luckow B, et al. The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics. 1994;20(3):377–385. doi:10.1006/geno.1994.11918034310
  • Lantz KA, Vatamaniuk MZ, Brestelli JE, et al. Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest. 2004;114(4):512–520. doi:10.1172/JCI2114915314688
  • Li B, Fan J, Chen N. A novel regulator of type II diabetes: microRNA-143. Trends Endocrinol Metab. 2018;29(6):380–388. doi:10.1016/j.tem.2018.03.01929680463
  • Charman M, Colbourne TR, Pietrangelo A, et al. Oxysterol-binding protein (OSBP)-related protein 4 (ORP4) is essential for cell proliferation and survival. J Biol Chem. 2014;289(22):15705–15717. doi:10.1074/jbc.M114.57121624742681
  • Yan D, Mäyränpää MI, Wong J, et al. OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J Biol Chem. 2008;283(1):332–340. doi:10.1074/jbc.M70531320017991739
  • Pulli I, Lassila T, Pan G, et al. Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments. Cell Calcium. 2018;72:62–69. doi:10.1016/j.ceca.2018.03.00129748134
  • Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011;13(4):434–446. doi:10.1038/ncb221121441927
  • Mandemakers W, Abuhatzira L, Xu H, et al. Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain. Diabetologia. 2013;56(7):1547–1556. doi:10.1007/s00125-013-2901-523595248
  • van der Laden J, Soppa U, Becker W. Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK). Cell Commun Signal. 2015;13(1):3. doi:10.1186/s12964-014-0082-625630557
  • Shojima N, Hara K, Fujita H, et al. Depletion of homeodomain-interacting protein kinase 3 impairs insulin secretion and glucose tolerance in mice. Diabetologia. 2012;55(12):3318–3330. doi:10.1007/s00125-012-2711-122983607
  • Locke J, da Silva Xavier G, Dawe HR, et al. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia. 2014;57(1):122–128. doi:10.1007/s00125-013-3089-424149837
  • Mikhaylova O, Stratton Y, Hall D, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21(4):532–546. doi:10.1016/j.ccr.2012.02.01922516261
  • Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci. 1992;89(18):8641–8645. doi:10.1073/pnas.89.18.86411326760
  • Lamont BJ, Li Y, Kwan E, et al. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J Clin Invest. 2012;122(1):388–402. doi:10.1172/JCI4249722182839
  • Mondal P, Song W-J, Li Y, et al. Increasing β-cell mass requires additional stimulation for adaptation to secretory demand. Mol Endocrinol. 2015;29(1):108–120. doi:10.1210/me.2014-126525387052
  • Jo S, Chen J, Xu G, et al. miR-204 controls glucagon-like peptide 1 receptor expression and agonist function. Diabetes. 2018;67(2):256–264. doi:10.2337/db17-050629101219
  • Chakraborty C, Doss CGP, Bandyopadhyay S, et al. Influence of miRNA in insulin signaling pathway and insulin resistance: micro‐molecules with a major role in type‐2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712. doi:10.1002/wrna.124024944010
  • Stoffers DA, Thomas MK, Habener JF. Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression. Trends Endocrinol Metab. 1997;8(4):145–151. doi:10.1016/S1043-2760(97)00008-818406800
  • Jonsson J, Ahlgren U, Edlund T, Edlund H. IPF1, a homeodomain protein with a dual function in pancreas development. Int J Dev Biol. 2003;39(5):789–798.
  • Wang H, Maechler P, Ritz-Laser B, et al. Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem. 2001;276(27):25279–25286. doi:10.1074/jbc.M10123320011309388
  • Vanderford NL, Cantrell JEL, Popa GJ, et al. Multiple kinases regulate mafA expression in the pancreatic beta cell line MIN6. Arch Biochem Biophys. 2008;480(2):138–142. doi:10.1016/j.abb.2008.10.00118948074
  • Mosley AL, Özcan S. The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J Biol Chem. 2004;279(52):54241–54247. doi:10.1074/jbc.M41037920015496408
  • Mosley AL, Özcan S. Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem. 2003;278(22):19660–19666. doi:10.1074/jbc.M21237520012665509
  • Kishi A, Nakamura T, Nishio Y, et al. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab. 2003;284(4):. doi:10.1152/ajpendo.00390.2002
  • Gao Y, Miyazaki JI, Hart GW. The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 β-cells. Arch Biochem Biophys. 2003;415(2):155–163. doi:10.1016/S0003-9861(03)00234-012831837
  • Kebede M, Ferdaoussi M, Mancini A, et al. Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1. Proc Natl Acad Sci. 2012;109(7):2376–2381. doi:10.1073/pnas.111435010922308370
  • Keller DM, McWeeney S, Arsenlis A, et al. Characterization of pancreatic transcription factor Pdx-1 binding sites using promoter microarray and serial analysis of chromatin occupancy. J Biol Chem. 2007;282(44):32084–32092. doi:10.1074/jbc.M70089920017761679
  • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226. doi:10.1038/nature0307615538371
  • Ghelani HS, Rachchh MA, Gokani RH. MicroRNAs as newer therapeutic targets: a big hope from a tiny player. J Pharmacol Pharmacother. 2012;3(3):217. doi:10.4103/0976-500X.9941623129956
  • Naya FJ, Huang H-P, Qiu Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997;11(18):2323–2334. doi:10.1101/gad.11.18.23239308961
  • Andrali SS, Qian Q, Özcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem. 2007;282(21):15589–15596. doi:10.1074/jbc.M70176220017403669