152
Views
7
CrossRef citations to date
0
Altmetric
Original Research

The Clinical Value of the RA-Adjusted Fracture Risk Assessment Tool in the Fracture Risk Prediction of Patients with Type 2 Diabetes Mellitus in China

, , , &
Pages 327-333 | Published online: 29 Jan 2021

References

  • Kulwas A, Drela E, Jundziłł W, Góralczyk B, Ruszkowska-Ciastek B, Rość D. Circulating endothelial progenitor cells and angiogenic factors in diabetes complicated diabetic foot and without foot complications. J Diabetes Complications. 2015;29(5):686–690. doi:10.1016/j.jdiacomp.2015.03.013
  • Waniczek D, Kozowicz A, Muc-Wierzgoń M, Kokot T, Świętochowska E, Nowakowska-Zajdel E. Adjunct methods of the standard diabetic foot ulceration therapy. Evid Based Complement Alternat Med. 2013;2013:1–12. doi:10.1155/2013/243568
  • Nguyen TT, Ding D, Wolter WR, et al. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J Med Chem. 2018;61(19):8825–8837. doi:10.1021/acs.jmedchem.8b01005
  • Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–149. doi:10.1016/j.diabres.2013.11.002
  • Siris E, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014;25(5):1439–1443. doi:10.1007/s00198-014-2655-z
  • Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int. 2018;29(8):1721–1736. doi:10.1007/s00198-018-4532-7
  • Poiana C, Capatina C. Fracture risk assessment in patients with diabetes mellitus. J Clin Densitom. 2017;20(3):432–443. doi:10.1016/j.jocd.2017.06.011
  • Thong E, Herath M, Weber D, et al. Fracture risk in young and middle-aged adults with type 1 diabetes mellitus: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 2018;89(3):314–323. doi:10.1111/cen.13761
  • Wang H, Ba Y, Xing Q, Du J. Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open. 2019;9(1):e024067. doi:10.1136/bmjopen-2018-024067
  • Sato M, Ye W, Sugihara T, Isaka Y. Fracture risk and healthcare resource utilization and costs among osteoporosis patients with type 2 diabetes mellitus and without diabetes mellitus in Japan: retrospective analysis of a hospital claims database. BMC Musculoskelet Disord. 2016;17(1):489. doi:10.1186/s12891-016-1344-9
  • Tebé C, Martinez-Laguna D, Moreno V, et al. Differential mortality and the excess rates of hip fracture associated with type 2 diabetes: accounting for competing risks in fracture prediction matters. J Bone Miner Res. 2018;33(8):1417–1421. doi:10.1002/jbmr.3435
  • Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007;18(4):427–444. doi:10.1007/s00198-006-0253-4
  • Gilbert MP, Pratley RE. The impact of diabetes and diabetes medications on bone health. Endocr Rev. 2015;36(2):194–213. doi:10.1210/er.2012-1042
  • Fan Y, Wei F, Lang Y, Liu Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int. 2016;27(1):219–228. doi:10.1007/s00198-015-3279-7
  • Majumdar SR, Leslie WD, Lix LM, et al. Longer duration of diabetes strongly impacts fracture risk assessment: the manitoba BMD cohort. J Clin Endocrinol Metab. 2016;101(11):4489–4496. doi:10.1210/jc.2016-2569
  • Liu M, Lu Y, Cheng X, et al. Relationship between abnormal glucose metabolism and osteoporosis in Han Chinese men over the age of 50 years. Clin Interv Aging. 2019;14:445–451. doi:10.2147/CIA.S164021
  • Schwartz A, Vittinghoff E, Bauer D, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305(21):2184–2192. doi:10.1001/jama.2011.715
  • Guo Y, Wang Y, Chen F, Wang J, Wang D. Assessment of risk factors for fractures in patients with type 2 diabetes over 60 years old: a cross-sectional study from Northeast China. J Diabetes Res. 2020;2020:1508258. doi:10.1155/2020/1508258
  • Palermo A, Tuccinardi D, Defeudis G, et al. BMI and BMD: the potential interplay between obesity and bone fragility. Int J Environ Res Public Health. 2016;13(6):544. doi:10.3390/ijerph13060544
  • Schwartz A. Epidemiology of fractures in type 2 diabetes. Bone. 2016;82:2–8. doi:10.1016/j.bone.2015.05.032
  • Giangregorio L, Leslie W, Lix L, et al. FRAX underestimates fracture risk in patients with diabetes. Bone Miner Res. 2012;27(2):301–308. doi:10.1002/jbmr.556
  • Bai J, Gao Q, Wang C, Dai J. Diabetes mellitus and risk of low-energy fracture: a meta-analysis. Aging Clin Exp Res. 2020;32(11):2173–2186. doi:10.1007/s40520-019-01417-x
  • Jia P, Bao L, Chen H, et al. Risk of low-energy fracture in type 2 diabetes patients: a meta-analysis of observational studies. Osteoporos Int. 2017;28(11):3113–3121. doi:10.1007/s00198-017-4183-0
  • Rubin MR. Skeletal fragility in diabetes. Ann N Y Acad Sci. 2017;1402(1):18–30. doi:10.1111/nyas.13463
  • Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:455–468. doi:10.2147/TCRM.S131945
  • Hamilton E, Davis WA, Bruce DG, Davis TM. Influence of premature mortality on the link between type 2 diabetes and hip fracture: the fremantle diabetes study. J Clin Endocrinol Metab. 2017;102(2):551–559. doi:10.1210/jc.2016-3570
  • Napoli N, Chandran M, Pierroz D, Abrahamsen B, Schwartz A, Ferrari S. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208–219. doi:10.1038/nrendo.2016.153
  • Conte C, Epstein S, Napoli N. Insulin resistance and bone: a biological partnership. Acta Diabetol. 2018;55(4):305–314. doi:10.1007/s00592-018-1101-7
  • Yamagishi S, Nakamura K, Inoue H. Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med Hypotheses. 2005;65(6):1013–1015. doi:10.1016/j.mehy.2005.07.017
  • Karim L, Moulton J, Van Vliet M, et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes. Bone. 2018;114:32–39. doi:10.1016/j.bone.2018.05.030
  • Garnero P, Borel O, Gineyts E, et al. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone. 2006;38(3):300–309. doi:10.1016/j.bone.2005.09.014
  • Alikhani M, Alikhani Z, Boyd C, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone. 2007;40(2):345–353. doi:10.1016/j.bone.2006.09.011
  • Wang X, Yu J, Wang X, et al. The associations between hypovitaminosis d, higher pth levels with bone mineral densities, and risk of the 10-year probability of major osteoporotic fractures in chinese patients with t2dm. Endocr Pract. 2018;24(4):334–341. doi:10.4158/EP-2017-0164
  • Patsch J, Li X, Baum T, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28(8):1721–1728. doi:10.1002/jbmr.1950
  • Schacter G, Leslie W. DXA-based measurements in diabetes: can they predict fracture risk? Calcif Tissue Int. 2017;100(2):150–164. doi:10.1007/s00223-016-0191-x
  • Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D. Comparison of methods for improving fracture risk assessment in diabetes: the manitoba BMD registry. J Bone Miner Res. 2018;33(11):1923–1930. doi:10.1002/jbmr.3538
  • Chinese Society of Osteoporosis and Bone Mineral Research; Chinese Society of Endocrinology; Chinese Diabetes Society; Association; C. M.; Chinese Endocrinologist Association; Association, C. M. D. Chinese expert consensus on the management of fracture risk in diabetic patients. Chin J Osteoporos Bone Miner Res. 2019;12(4):319–335.
  • Chen P, Li Z, Hu Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health. 2016;16(1):1039. doi:10.1186/s12889-016-3712-7
  • Tian L, Yang R, Wei L, et al. Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: a cross-sectional study in Gansu province, Northwestern of China. Medicine. 2017;96(43):e8294. doi:10.1097/MD.0000000000008294
  • Cui L, Chen L, Xia W, et al. Vertebral fracture in postmenopausal Chinese women: a population-based study. Osteoporos Int. 2017;28(9):2583–2590. doi:10.1007/s00198-017-4085-1
  • Jepsen K, Schlecht S. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD. J Bone Miner Res. 2014;29(4):784–786. doi:10.1002/jbmr.2189
  • Komatsu Y, Majima T. Negative correlation between BMD and HbA1C in patients with type 2 diabetes. Clin Calcium. 2006;16(8):1327–1331.
  • Rabijewski M, Papierska L, Piątkiewicz P. An association between bone mineral density and anabolic hormones in middle-aged and elderly men with prediabetes. Aging Male. 2017;20(3):205–213. doi:10.1080/13685538.2017.1338254
  • Gu L, Lai X, Wang Y, Zhang J, Liu J. A community-based study of the relationship between calcaneal bone mineral density and systemic parameters of blood glucose and lipids. Medicine. 2019;98(27):e16096. doi:10.1097/MD.0000000000016096