159
Views
4
CrossRef citations to date
0
Altmetric
Review

Present Situation and Research Progress of Kidney Function Recoverability Evaluation of Acute Kidney Injury Patient

&
Pages 1919-1925 | Published online: 18 May 2021

References

  • Marx D, Metzger J, Pejchinovski M, et al. Proteomics and metabolomics for AKI diagnosis. Semin Nephrol. 2018;38(1):63–87. doi:10.1016/j.semnephrol.2017.09.007
  • Kiryluk K, Bomback AS, Cheng YL, et al. Precision medicine for acute kidney injury (AKI): redefining AKI by agnostic kidney tissue interrogation and genetics. Semin Nephrol. 2018;38(1):40–51. doi:10.1016/j.semnephrol.2017.09.006
  • Gammelager H, Christiansen CF, Johansen MB, Tønnesen E, Jespersen B, Sørensen HT. One-year mortality among Danish intensive care patients with acute kidney injury: a cohort study. Crit Care. 2012;16(4):R124. doi:10.1186/cc11420
  • Beker BM, Corleto MG, Fieiras C, Musso CG. Novel acute kidney injury biomarkers: their characteristics, utility and concerns. Int Urol Nephrol. 2018;50(4):705–713. doi:10.1007/s11255-017-1781-x
  • Merchant ML, Brier ME, Slaughter MS, Klein JB, McLeish KR. Biomarker enhanced risk prediction for development of AKI after cardiac surgery. BMC Nephrol. 2018;19(1):102. doi:10.1186/s12882-018-0902-9
  • Matsuura R, Komaru Y, Miyamoto Y, et al. Response to different furosemide doses predicts AKI progression in ICU patients with elevated plasma NGAL levels. Ann Intensive Care. 2018;8(1):8. doi:10.1186/s13613-018-0355-0
  • Chawla LS, Bellomo R, Bihorac A, et al.; Acute Disease Quality Initiative Workgroup. Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 workgroup. Nat Rev Nephrol. 2017;13(4):241–257. doi:10.1038/nrneph.2017.2
  • Ostermann M, Kashani K, Forni LG. The two sides of creatinine: both as bad as each other? J Thorac Dis. 2016;8(7):E628–630. doi:10.21037/jtd.2016.05.36
  • Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiol. 2017;219(3):554–572. doi:10.1111/apha.12764
  • Albert C, Albert A, Kube J, et al. Urinary biomarkers may provide prognostic information for subclinical acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2018;155(6):2441–2452.e13. doi:10.1016/j.jtcvs.2017.12.056
  • Vysakh A, Raji NR, Suma D, Jayesh K, Jyothis M, Latha MS. Role of antioxidant defence, renal toxicity markers and inflammatory cascade in disease progression of acute pyelonephritis in experimental rat model. Microb Pathog. 2017;109(12):189–194. doi:10.1016/j.micpath.2017.05.047
  • Endre ZH. Assessing renal recovery after acute kidney injury: can biomarkers help? Nephron. 2018;140(2):86–89. doi:10.1159/000492290
  • Singer E, Markó L, Paragas N, et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol. 2013;207(4):663–672. doi:10.1111/apha.12054
  • Nickolas TL, Schmidt-Ott KM, Canetta P, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59(3):246–255. doi:10.1016/j.jacc.2011.10.854
  • Di Somma S, Magrini L, De Berardinis B, et al. Additive value of blood neutrophil gelatinase-associated lipocalin to clinical judgement in acute kidney injury diagnosis and mortality prediction in patients hospitalized from the emergency department. Crit Care. 2013;17(1):R29. doi:10.1186/cc12510
  • Biernawska J, Bober J, Kotfis K, Bogacka A, Barnik E, Żukowski M. Cardiac surgery related cardio-renal syndrome assessed by conventional and novel biomarkers under or overestimated diagnosis? Arch Med Sci. 2017;13(5):1111–1120. doi:10.5114/aoms.2017.69328
  • Obermuller N, Geiger H, Weipert C, Urbschat A. Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol. 2014;46(1):1–7. doi:10.1007/s11255-013-0448-5
  • Jin Y, Shao X, Sun B, Miao C, Li Z, Shi Y. Urinary kidney injury molecule-1 as an early diagnostic biomarker of obstructive acute kidney injury and development of a rapid detection method. Med Rep. 2017;15(3):1229–1235. doi:10.3892/mmr.2017.6103
  • Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–244. doi:10.1046/j.1523-1755.2002.00433.x
  • Kokkoris S, Pipili C, Grapsa E, Kyprianou T, Nanas S. Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail. 2013;35(4):579–591. doi:10.3109/0886022X.2013.773835
  • Slocum JL, Heung M, Pennathur S. Marking renal injury: can we move beyond serum creatinine? Transl Res. 2012;159(4):277–289. doi:10.1016/j.trsl.2012.01.014
  • Choudhary A, Basu S, Dey SK, Rout JK, Das RK, Dey RK. Association and prognostic value of serum Cystatin C, IL-18 and uric acid in urological patients with acute kidney injury. Clinica Chimica Acta. 2018;482:144–148. doi:10.1016/j.cca.2018.04.005
  • Mishra OP, Rai AK, Srivastava P, et al. Predictive ability of urinary biomarkers for outcome in children with acute kidney injury. Pediatric Nephrol. 2017;32(3):521–527. doi:10.1007/s00467-016-3445-y
  • Lin X, Yuan J, Zhao Y, Zha Y. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol. 2015;28(1):7–16. doi:10.1007/s40620-014-0113-9
  • Puthumana J, Ariza X, Belcher JM, Graupera I, Ginès P, Parikh CR. Urine interleukin 18 and lipocalin 2 are biomarkers of acute tubular necrosis in patients with cirrhosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(7):1003–1013. doi:10.1016/j.cgh.2016.11.035
  • Nisula S, Yang R, Poukkanen M, et al.; FINNAKI Study Group. Predictive value of urine inter leukin-18 in the evolution and outcome of acute kidney injury in critically ill adult patients. Br J Anaesth. 2015;114(3):460–468. doi:10.1093/bja/aeu382
  • de Geus HR, Betjes MG, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–108. doi:10.1093/ckj/sfs008
  • Hu Y, Liu H, Du L, Wan J, Li X. Serum cystatin C predicts AKI and the prognosis of patients in coronary care unit: a prospective, observational study. Kidney Blood Press Res. 2017;42(6):961–973. doi:10.1159/000485341
  • El-Gammacy TM, Shinkar DM, Mohamed NR, Al-Halag AR. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome. Scand J Clin Lab Invest. 2018;78(5):352–357. doi:10.1080/00365513.2018.1472803
  • Leem AY, Park MS, Park BH, et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J. 2017;58(3):604–612. doi:10.3349/ymj.2017.58.3.604
  • Fouad M, Boraie M. Cystatin C as an early marker of acute kidney injury and predictor of mortality in the intensive care unit after acute myocardial infarction. Arab J Nephrol Transplant. 2013;6(1):21–26.
  • Gates GF. Glomerular filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (stannous). Am J Roentgenol. 1982;138(3):565–570. doi:10.2214/ajr.138.3.565
  • Morine Y, Enkhbold C, Imura S, et al. Accurate estimation of functional liver volume using Gd-EOB-DTPA MRI compared to MDCT/99mTc-SPECT fusion imaging. Anticancer Res. 2017;37(10):5693–5700. doi:10.21873/anticanres.12006
  • Assadi M, Eftekhari M, Hozhabrosadati M, et al. Comparison of methods for determination of glomerular filtration rate: low- and high-dose Tc-99m-DTPA renography, predicted creatinine clearance method, and plasma sample method. Int Urol Nephrol. 2008;40(4):1059–1065. doi:10.1007/s11255-008-9446-4
  • Yuan X, Zhang J, Tang K, et al. Determination of glomerular filtration rate with CT measurement of renal clearance of iodinated contrast material versus 99mTc-DTPA dynamic imaging “gates” method: a validation study in asymmetrical renal disease. Radiology. 2016;282(2):552–560. doi:10.1148/radiol.2016160425
  • You S, Ma X, Zhang C, et al. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method. Eur Radiol. 2018;28(3):1077–1084. doi:10.1007/s00330-017-5061-z
  • Xu X, Fang W, Ling H, Chai W, Chen K. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease in patients with chronic kidney disease: initial study. Eur Radiol. 2010;20(4):978–983. doi:10.1007/s00330-009-1619-8
  • Dayal M, Gamanagatti S, Kumar A. Imaging in renal trauma. World J Radiol. 2013;5(8):275–284. doi:10.4329/wjr.v5.i8.275
  • Rumack CM, Wilson SR, Charboneau JW. Diagnostic Ultrasound. 3rd ed. St. Louis: Elsevier Health Sciences; 2005.
  • Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32(10):1553–1559. doi:10.1007/s00134-006-0360-x
  • Le Dorze M, Bouglé A, Deruddre S, Duranteau J. Renal Doppler ultrasound: a new tool to assess renal perfusion in critical illness. Shock. 2012;37(4):360–365. doi:10.1097/SHK.0b013e3182467156
  • Radermacher J, Mengel M, Ellis S, et al. The renal arterial resistance index and renal allograft survival. N Engl J Med. 2003;349(2):115–124. doi:10.1056/NEJMoa022602
  • Craig WD, Wagner BJ, Travis MD. Pyelonephritis: radiologic-pathologic review. Radiographics. 2008;28(1):255–277. doi:10.1148/rg.281075171
  • Wu H, Liu K, Darko IN, et al. Predictive value of renal resistive index for the onset of acute kidney injury and its non-recovery: a systematic review and meta-analysis. Clin Nephrol. 2020;93(4):172–186. doi:10.5414/CN109979
  • Di Nicolò P, Granata A. Renal resistive index: not only kidney. Clin Exp Nephrol. 2017;21(3):359–366. doi:10.1007/s10157-016-1323-3
  • Harrois A, Grillot N, Figueiredo S, Duranteau J. Acute kidney injury is associated with a decrease in cortical renal perfusion during septic shock. Critical Care. 2018;22(1):161. doi:10.1186/s13054-018-2067-0
  • Cao W, Cui S, Yang L, et al. Contrast-enhanced ultrasound for assessing renal perfusion impairment and predicting acute kidney injury to chronic kidney disease progression. Antioxid RedoxSignal. 2017;27(17):1397–1411. doi:10.1089/ars.2017.7006
  • Wang L, Mohan C. Contrast-enhanced ultrasound: a promising method for renal microvascular perfusion evaluation. J Transl Int Med. 2016;4(3):104–108. doi:10.1515/jtim-2016-0033