153
Views
1
CrossRef citations to date
0
Altmetric
Case Series

A Review of Three Chinese Cases of Acromicric/Geleophysic Dysplasia with FBN1 Mutations

, , , , , , & show all
Pages 1873-1880 | Published online: 17 May 2021

References

  • Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A:2869–2892. doi:10.1002/ajmg.a.37365
  • Le Goff C, Cormier-Daire V. From tall to short: the role of TGFβ signaling in growth and its disorders. Am J Med Genet C Semin Med Genet. 2012;160C:145–153. doi:10.1002/ajmg.c.31337
  • Wang Y, Zhang H, Ye J, Han L, Gu X. Three novel mutations of the FBN1 gene in Chinese children with acromelic dysplasia. J Hum Genet. 2014;59:563–567. doi:10.1038/jhg.2014.73
  • Pereira L, D’Alessio M, Ramirez F, et al. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993;2:961–968. doi:10.1093/hmg/2.7.961
  • Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol. 2018;71–72:82–89. doi:10.1016/j.matbio.2017.07.004
  • Sakai LY, Keene DR. Fibrillin protein pleiotropy: acromelic dysplasias. Matrix Biol. 2019;80:6–13. doi:10.1016/j.matbio.2018.09.005
  • Sakai LY, Keene DR, Renard M, De Backer J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene. 2016;591:279–291. doi:10.1016/j.gene.2016.07.033
  • Cain SA, McGovern A, Baldwin AK, Baldock C, Kielty CM. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions. PLoS One. 2012;7:e48634. doi:10.1371/journal.pone.0048634
  • Le Goff C, Mahaut C, Wang LW, et al. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet. 2011;89:7–14. doi:10.1016/j.ajhg.2011.05.012
  • McInerney-Leo AM, Le Goff C, Leo PJ, et al. Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia. J Med Genet. 2016;53:457–464. doi:10.1136/jmedgenet-2015-103647
  • Intarak N, Theerapanon T, Thaweesapphithak S, Suphapeetiporn K, Porntaveetus T, Shotelersuk V. Genotype-phenotype correlation and expansion of orodental anomalies in LTBP3-related disorders. Mol Genet Genomics. 2019;294:773–787. doi:10.1007/s00438-019-01547-x
  • Cheng SW, Luk HM, Chu YWY, et al. A report of three families with FBN1-related acromelic dysplasias and review of literature for genotype-phenotype correlation in geleophysic dysplasia. Eur J Med Genet. 2018;61:219–224. doi:10.1016/j.ejmg.2017.11.018
  • Li D, Dong H, Zheng H, et al. A chinese boy with geleophysic dysplasia caused by compound heterozygous mutations in ADAMTSL2. Eur J Med Genet. 2017;60:685–689. doi:10.1016/j.ejmg.2017.09.003
  • Faivre L, Gorlin RJ, Wirtz MK, et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 2003;40:34–36. doi:10.1136/jmg.40.1.34
  • SScott A, Yeung S, Dickinson DF, Karbani G, Crow YJ. Natural history of cardiac involvement in geleophysic dysplasia. Am J Med Genet A. 2005;132A:320–323. doi:10.1002/ajmg.a.30450
  • de Bruin C, Finlayson C, Funari MF, et al. Two patients with severe short stature due to a FBN1 Mutation (p.Ala1728Val) with a mild form of acromicric dysplasia. Horm Res Paediatr. 2016;86:342–348. doi:10.1159/000446476
  • Hasegawa K, Tanaka H. Children with short-limbed short stature in pediatric endocrinological services in Japan. Pediatr Int. 2014;56:809–812. doi:10.1111/ped.12511
  • Zhang H, Yang R, Wang Y, et al. A pilot study of gene testing of genetic bone dysplasia using targeted next-generation sequencing. J Hum Genet. 2015;60:769–776. doi:10.1038/jhg.2015.112