103
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Plasma Endogenous Sulfur Dioxide: A Novel Biomarker to Predict Acute Kidney Injury in Critically Ill Patients

, , &
Pages 2127-2136 | Published online: 28 May 2021

References

  • Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI‑EPI study. Intensive Care Med. 2015;41:1411–1423. doi:10.1007/s00134-015-3934-7.
  • Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949–1964. doi:10.1016/S0140-6736(19)32563-2.
  • Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:649–672. doi:10.1053/j.ajkd.2013.02.349.
  • Ronco C, Bellomo R, Kellum JA. Understanding renal functional reserve. Intensive Care Med. 2017;43:917–920. doi:10.1007/s00134-017-4691-6.
  • Lehner GF, Forni LG, Joannidis M. Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night? Nephron. 2016;134:183–190. doi:10.1159/000447979.
  • Sandrra K-G, Meersch M, Bell M. Biomarker-guided management of acute kidney injury. Curr Opin Crit Care. 2020;26:556–562. doi:10.1097/MCC.0000000000000777.
  • Koyner JL, Zarbock A, Basu RK, et al. The impact of biomarkers of acute kidney injury on individual patient care. Nephrol Dial Transplant. 2020;35:1295–1305. doi:10.1093/ndt/gfz188.
  • Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66:993–1005. doi:10.1053/j.ajkd.2015.06.018.
  • Dewitte A, Joannès-Boyau O, Sidobre C, et al. Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol. 2015;10:1900–1910. doi:10.2215/CJN.12651214.
  • Woerman AL, David M. Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate. Cardiovasc Res. 2013;99:16–23. doi:10.1093/cvr/cvt057.
  • Min KB, Min JY, Cho SI, et al. The relationship between air pollutants and heart-rate variability among community residents in Korea. Inhal Toxicol. 2008;20:435–444. doi:10.1080/08958370801903834.
  • Huang Y, Tang C, Du JB, et al. Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system. Oxid Med Cell Longev. 2016;3:8961951. doi:10.1155/2016/8961951.
  • Singer TP, Kearney EB. Intermediary metabolism of L-cysteinesulfinic acid in animal tissues. Arch of Biochem Biophys. 1956;61:397–409. doi:10.1016/0003-9861(56)90363-0.
  • Ma HL, Huang XL, Liu Y, et al. Sulfur dioxide attenuates LPS-induced acute lung injury via enhancing polymorphonuclear neutrophil apoptosis. Acta Pharmacol Sin. 2012;33:983–990. doi:10.1038/aps.2012.70.
  • Du S, Jin H, Bu D, et al. Endogenously generated sulfur dioxide and its vasorelaxant effect in rats. Acta Pharmacol Sin. 2008;29:923–930. doi:10.1111/j.1745-7254.2008.00845.x.
  • Liang Y, Liu D, Ochs T, et al. Endogenous sulfur dioxide protects against isoproterenol—induced myocardial injury and increases myocardial antioxidant capacity in rats. Lab Invest. 2011;91:12–23. doi:10.1038/labinvest.2010.156.
  • Kajiyama H, Nojima Y, Mitsuhashi H, et al. Elevated levels of serum sulfite in patients with chronic renal failure. J Am Soc Nephrol. 2000;11:923–927.
  • Mitsuhashi H, Ikeuchi H, Yamashita S, et al. Increased levels of serum sulfite in patients with acute pneumonia. Shock. 2004;21:99–102. doi:10.1097/01.shk.0000105501.75189.85.
  • Wu W, Jia Y, Du S, et al. Changes of sulfur dioxide, nuclear factor-κB, and interleukin-8 levels in pediatric acute lymphoblastic leukemia with bacterial inflammation. Chin Med J. 2014;127:4110–4113.
  • Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi:10.1136/bmj.g7594.
  • Bellomo R, Ronco C, Kellum JA, et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:204–212. doi:10.1186/cc2872.
  • Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25. doi:10.1186/cc12503.
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–810. doi:10.1001/jama.2016.0287.
  • DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.
  • Glassford NJ, Schneider AG, Xu S, et al. The nature and discriminatory value of urinary neutrophil gelatinase associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med. 2013;39:1714–1724. doi:10.1007/s00134-013-3040-7.
  • Pencina MJ, D’Agostino RBJ, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–172. doi:10.1002/sim.2929.
  • Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26:565–574. doi:10.1177/0272989X06295361.
  • Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261:1207–1214. doi:10.1097/SLA.0000000000000732.
  • Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20:201. doi:10.1186/s13054-016-1373-7.
  • Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–1561. doi:10.1007/s00134-016-4670-3.
  • Seo DW, Li H, Qu CK, et al. Shp-1 mediates the anti-prolferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. J Biol Chem. 2006;281:3711–3721. doi:10.1074/jbc.M509932200.
  • Zuo S, Liu C, Wang J. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senscence of MCF-7 breast cancer cells. J Cancer Res Clin Oncol. 2012;138:1045–1055. doi:10.1007/s00432-012-1153-y.
  • Gunnerson KJ, Shaw AD, Chawla LS, et al. TIMP2•IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients. J Trauma Acute Care Surg. 2016;80:243–249. doi:10.1097/TA.0000000000000912.
  • Nickolas TL, O’Rourke MJ, Yang J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–819. doi:10.7326/0003-4819-148-11-200806030-00003.
  • Cruz DN, Bagshaw SM, Maisel A, et al. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64. doi:10.1159/000349965.
  • Geus HRHD, Bakker J, Lesaffre EM, et al. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med. 2011;183:907–914. doi:10.1164/rccm.200908-1214OC.
  • Srisawat N, Kellum JA. The role of biomarkers in acute kidney injury. Crit Care Clin. 2020;36:125–140. doi:10.1016/j.ccc.2019.08.010.
  • Johnson ACM, Zager RA. Mechanisms underlying increased TIMP2 and IGFBP7 urinary excretion in experimental AKI. J Am Soc Nephrol. 2018;29:2157–2167. doi:10.1681/ASN.2018030265.
  • Jin HF, Zhao M, Chen SY, et al. The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rat with isopropylarterenol-induced myocardial injury. Int J Mol Sci. 2013;14:10465–10482. doi:10.3390/ijms140510465.
  • Du JT, Huang YQ, Li K, et al. Retina-derived endogenous sulfur dioxide might be a novel antiapoptotic factor. Biochem Biophys Res C Ommun. 2018;496:955–960. doi:10.1016/j.bbrc.2018.01.103.
  • Han Y, Yi W, Qin J, et al. Dose-dependent effect of sulfur dioxide on brain damage induced by recurrent febrile seizures in rats. Neurosci Lett. 2014;563:149–154.
  • Zhang H, Huang Y, Bu D, et al. Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor. Sci Rep. 2016;6:27026. doi:10.1016/j.neulet.2013.12.042.
  • Zhu Z, Zhang L, Chen Q, et al. Macrophage-derived sulfur dioxide is a novel inflammation regulator. Biochem Biophys Res Commun. 2020;524:916–920. doi:10.1016/j.bbrc.2020.02.013.
  • Li HX, Zheng XC, Chen SY, et al. Increased endogenous sulfur dioxide involved in the pathogenesis of postural tachycardia syndrome in children: a case-control study. Chin Med J (Engl). 2018;131:435–439. doi:10.4103/0366-6999.225051.
  • Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–230. doi:10.1038/nrneph.2017.184.
  • Zhang ZH, Navarese EP, Zheng B, et al. Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome. J Evid Based Med. 2020;13:301–302. doi:10.1111/jebm.12418.
  • Khan ZF, Alotaibi SR. Applications of artificial intelligence and big data analytics in m-health: a healthcare system perspective. J Healthc Eng. 2020;30:8894694. doi:10.1155/2020/8894694.
  • Zimmerman LP, Reyfman PA, Smith ADR, et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med Inform Decis Mak. 2019;19(Suppl 1):16. doi:10.1186/s12911-019-0733-z.
  • Zhang ZH, Ho KM, Hong Y. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care. 2019;23:112. doi:10.1186/s13054-019-2411-z.